Reconstruction of Depth 3 Arithmetic circuits with Top Fanin 3

CCC August, 2025

Shubhangi Saraf, Devansh Shringi University of Toronto

Arithmetic Circuits

- Circuit computing a polynomial $f \in \mathbb{F}[x_1, ..., x_n]$.
- Gates are +, ×
- Leaves have $\{x_1, \ldots, x_n, \mathbb{F}\}$.
- Edges with labels from **F** (1 by default).

Figure: Circuit computing $xy + 2y^2$

Reconstruction

- $f \in \mathbb{F}[x_1, ..., x_n]$ computed by $C \in \mathscr{C}$.
- ullet Given Blackbox access to evaluations of f.
- Efficiently output a circuit C' that computes f.

Reconstruction

- $f \in \mathbb{F}[x_1, ..., x_n]$ computed by $C \in \mathscr{C}$.
- ullet Given Blackbox access to evaluations of f.
- Efficiently output a circuit C' that computes f.

[Proper Learning]: If $C' \in \mathscr{C}$

\(\Sigma\) Circuit

 Multivariate Interpolation [BOT83, KS01]

EII Circuit

 Multivariate Interpolation [BOT83, KS01]

Factoring [Kal87]

- ullet Combination of Factoring and Interpolation work for $\Pi\Sigma\Pi$ circuits
- Extremely challenging for $\Sigma\Pi\Sigma$ circuits.
- Reconstruction for Set-Multilinear $\Sigma\Pi\Sigma$ circuits captures Tensor Decomposition.

• [Open]: Proper Learning for $\Sigma\Pi\Sigma$ circuits with Top Fan-in 2 and n=5

Hardness for Reconstruction of $\Sigma\Pi\Sigma$ Circuits

• Depth Reduction [GKKS13]

• Polytime PAC Learning for $\Sigma\Pi\Sigma$ circuits breaks cryptographic primitives [KS06].

• Proper Learning for Set-Multilinear $\Sigma\Pi\Sigma$ circuits is NP-hard[Häs90].

With Restricted Fan-in

• Restricted Top Fan-in $\Sigma\Pi\Sigma(k)$ circuits

• Restricted Top Fan-in $\Sigma\Pi\Sigma(k)$ circuits

$$C = G \times (T_1 + T_2 + \ldots + T_k)$$
 where each $T_i = \prod_{j=1}^d l_{ij}$ and $\gcd(T_1, \ldots, T_k) = 1$

sim(C)

• Restricted Top Fan-in $\Sigma\Pi\Sigma(k)$ circuits

$$C = G \times (T_1 + T_2 + \ldots + T_k)$$
 where each $T_i = \prod_{j=1}^d l_{ij}$ and $\gcd(T_1, \ldots, T_k) = 1$

sim(C)

• $rank(sim(C)) = dim(span(\{l_{ij} : i \in [k], j \in [d]\}))$

Polynomial Identity Testing (PIT)

• Checking if the input circuit computes 0 or not

• Simple Randomized Solution [Sch80, Zip79]

• Open: Efficient Derandomization

Polynomial Identity Testing (PIT)

• Checking if the input circuit computes 0 or not

• Simple Randomized Solution [Sch80, Zip79]

• Open: Efficient Derandomization

• Easier than Deterministic Reconstruction.

• Long-line of work [DS05, KS08, KS09, SS11, SS13] eventually give polytime Blackbox PIT when $k = \mathcal{O}(1)$.

• Long-line of work [DS05, KS08, KS09, SS11, SS13] eventually give polytime Blackbox PIT when $k = \mathcal{O}(1)$.

• Identically zero $\Sigma\Pi\Sigma(k)$ circuits must be low rank.

$$rank(sim(C)) < 3k^2$$

Past Work on Reconstruction of $\Sigma\Pi\Sigma(k)$ circuits

$$k=1 \text{ or } 2$$

• $\Sigma\Pi\Sigma(1)$ circuits are just $\Pi\Sigma$ circuits. Factoring [Kal87]

• $\Sigma\Pi\Sigma(2)$ is already challenging, even though PIT is trivial because of Unique factorization.

$$k=1 \text{ or } 2$$

• $\Sigma\Pi\Sigma(1)$ circuits are just $\Pi\Sigma$ circuits. Factoring [Kal87]

• $\Sigma\Pi\Sigma(2)$ is already challenging, even though PIT is trivial because of Unique factorization.

$$C = \prod_{j=1}^{d} l_{1j} + \prod_{j=1}^{d} l_{2j}$$

$$k=1 \text{ or } 2$$

• $\Sigma\Pi\Sigma(1)$ circuits are just $\Pi\Sigma$ circuits. Factoring [Kal87]

• $\Sigma\Pi\Sigma(2)$ is already challenging, even though PIT is trivial because of Unique factorization.

$$C = \prod_{j=1}^{d} l_{1j} + \prod_{j=1}^{d} l_{2j}$$

How do we learn these linear forms

From Blackbox access to C?

Past Work

Results	Field	Model	Running Time
[Shp07]	\mathbb{F}_q	$\Sigma\Pi\Sigma(2)$	quasipoly (n, d, \mathbb{F})
[KS09]	\mathbb{F}_q	$\Sigma\Pi\Sigma(k), k = \mathcal{O}(1)$	quasipoly (n, d, \mathbb{F})
[Sin16]	$F = \mathbb{R} \text{ or } \mathbb{C}$	$\Sigma\Pi\Sigma(2)$	poly(n, d)
[Sin22]	\mathbb{F}_q	$\Sigma\Pi\Sigma(2)$	poly(n, d, log F)

Past Work

Results	Field	Model	Running Time
[Shp07]	\mathbb{F}_q	$\Sigma\Pi\Sigma(2)$	quasipoly (n, d, \mathbb{F})
[KS09]	\mathbb{F}_q	$\Sigma\Pi\Sigma(k), k = \mathcal{O}(1)$	quasipoly (n, d, \mathbb{F})
[Sin16]	$F = \mathbb{R} \text{ or } \mathbb{C}$	$\Sigma\Pi\Sigma(2)$	poly(n,d)
[Sin22]	\mathbb{F}_q	$\Sigma\Pi\Sigma(2)$	poly(n, d, log F)

In all of the above, it is Proper Learning only when rank is high.

Our Results

• $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $\Sigma \Pi \Sigma(3)$ circuits

• Randomized $(nd)^{O(\log d)}$ time Reconstruction algorithm

• Proper learning when rank($sim(T_i + T_j)$) $\geq c \log d$ for a constant c.

Our Results

• $\mathbb{F} = \mathbb{R}$ or \mathbb{C} , $\Sigma \Pi \Sigma(3)$ circuits

• Randomized $(nd)^{O(\log d)}$ time Reconstruction algorithm

• Proper learning when rank($sim(T_i + T_j)$) $\geq c \log d$ for a constant c.

First Subexponential Reconstruction Algorithm for $\Sigma\Pi\Sigma(3)$ circuits!

Proof Idea

Proof Outline

• Prove Structural Results about $\Sigma\Pi\Sigma(3)$ circuits.

• Find few linear forms inside the circuit.

• Learn circuit from few linear forms.

Proof Outline

• Prove Structural Results about $\Sigma\Pi\Sigma(3)$ circuits.

• Find few linear forms inside the circuit.

• Learn circuit from few linear forms.

 $C \mod l_1 = T_2 \mod l_1$

 $T_2 \mod l_1$

• [KSO9] generalized this technique to work for projections of $\Sigma\Pi\Sigma(k)$ circuits.

• [KSO9] generalized this technique to work for projections of $\Sigma\Pi\Sigma(k)$ circuits.

Where do we get the linear forms?

• [Shp07, KS09] Find a variable reduction to $\log d$ variables, and brute force over all linear forms in Fover $\log d$ variables.

• Can't do it for $\mathbb R$ or $\mathbb C$

• \mathcal{S}_3 be the set of co-dimension 3 vanishing spaces.

• \mathcal{S}_3 be the set of co-dimension 3 vanishing spaces.

 $\mathbb{V}(l_1, l_2, *)$

• \mathcal{S}_3 be the set of co-dimension 3 vanishing spaces.

• \mathcal{S}_3 be the set of co-dimension 3 vanishing spaces.

 S_1

Codimension 1 spaces

 S_2

Codimension 2 spaces

not contained in S_1

 S_3

Codimension 3 spaces

not contained in \mathcal{S}_1 and \mathcal{S}_2

 S_1

Codimension 1 spaces

 S_2

Codimension 2 spaces

not contained in S_1

 S_3

Codimension 3 spaces

not contained in \mathcal{S}_1 and \mathcal{S}_2

Are the only spaces where all T_1 , T_2 , T_3 vanish?

Example

$$(x_1 + x_3)(x_2 - x_3)(x_4 + x_2) + (x_1 + x_2 - x_3)(x_2 + 5x_3)(x_5 + 4x_3) + (x_1 + 2x_2 - 3x_3)(5x_3 - 3x_2)(x_4 + 7x_5 + 15x_2)$$

Example

$$(x_1 + x_3)(x_2 - x_3)(x_4 + x_2) + (x_1 + x_2 - x_3)(x_2 + 5x_3)(x_5 + 4x_3) + (x_1 + 2x_2 - 3x_3)(5x_3 - 3x_2)(x_4 + 7x_5 + 15x_2)$$

Go mod
$$(x_2 - 2x_3)$$

Example

$$(x_1 + x_3)(x_2 - x_3)(x_4 + x_2) + (x_1 + x_2 - x_3)(x_2 + 5x_3)(x_5 + 4x_3) + (x_1 + 2x_2 - 3x_3)(5x_3 - 3x_2)(x_4 + 7x_5 + 15x_2)$$

Go mod
$$(x_2 - 2x_3)$$

$$(x_1 + x_3)(x_3)(x_4 + 2x_3) + (x_1 + x_3)(7x_3)(x_5 + 4x_3) + (x_1 + x_3)(-x_3)(x_4 + 7x_5 + 30x_3) = 0$$

Steps

• Showing S_1 , S_2 , S_3 have size $d^{\mathcal{O}(1)}$ when C has high rank.

Steps

• Showing S_1 , S_2 , S_3 have size $d^{O(1)}$ when C has high rank.

• Computing S_1 , S_2 , S_3 have in poly(n, d) time.

Steps

• Showing S_1 , S_2 , S_3 have size $d^{\mathcal{O}(1)}$ when C has high rank.

• Computing S_1 , S_2 , S_3 have in poly(n, d) time.

• Learning $\mathcal{O}(\log d)$ linear forms from a gate using $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$.

Steps

• Showing S_1 , S_2 , S_3 have size $d^{\mathcal{O}(1)}$ when C has high rank.

• Computing S_1 , S_2 , S_3 have in poly(n, d) time.

• Learning $\mathcal{O}(\log d)$ linear forms from a gate using $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$.

• Using techniques from [Shp07, KS09] to reconstruct the circuit.

Steps

• Showing $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ have size $d^{\mathcal{O}(1)}$ when C has high rank.

• Computing S_1 , S_2 , S_3 have in poly(n, d) time.

• Learning $\mathcal{O}(\log d)$ linear forms from a gate using $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$.

• Using techniques from [Shp07, KS09] to reconstruct the circuit.

 $C \mod l = 0$

$$C \mod l = 0$$

$$C \mod l = 0$$

• Degree d polynomial has at most d factors.

$$|\mathcal{S}_1| \leq d$$

Bounding \mathcal{S}_1

$$C \mod l = 0$$

• Degree d polynomial has at most d factors.

$$|\mathcal{S}_1| \leq d$$

Theorem[DS06, Shp07, KS09]

Let $\mathcal{L} := \{l : l \mid sim(C)\}$. Then $dim(span(\mathcal{L})) = \mathcal{O}(\log d)$

$$C \mod l = 0$$

• Degree d polynomial has at most d factors.

$$|\mathcal{S}_1| \leq d$$

Theorem[DS06, Shp07, KS09]

Let $\mathcal{L} := \{l : l \mid sim(C)\}$. Then $dim(span(\mathcal{L})) = \mathcal{O}(\log d)$

From 2-Query LDC Lower bounds

Bounding \mathcal{S}_2

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

$$l \mid T_1 \text{ and } l \in \text{span}(l_1, l_2)$$

Bounding \mathcal{S}_2

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

$$l \mid T_1 \text{ and } l \in \text{span}(l_1, l_2)$$

$$\mathrm{span}(l, l') = \mathrm{span}(l_1, l_2)$$

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

$$l \mid T_1 \text{ and } l \in \text{span}(l_1, l_2)$$

 $C \mod l \neq 0$

$$\mathrm{span}(l, l') = \mathrm{span}(l_1, l_2)$$

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

$$l \mid T_1 \text{ and } l \in \text{span}(l_1, l_2)$$

 $C \mod l \neq 0$

 $l' \mid (C \mod l)$

$$\mathrm{span}(l, l') = \mathrm{span}(l_1, l_2)$$

- Consider $\mathbb{V}(l_1, l_2) \in \mathcal{S}_2$.
- EASY CASE: When some T_i vanishes on $\mathbb{V}(l_1, l_2)$.

$$l \mid T_1 \text{ and } l \in \text{span}(l_1, l_2)$$

$$C \mod l \neq 0$$

$$l' \mid (C \mod l)$$

$$\mathrm{span}(l, l') = \mathrm{span}(l_1, l_2)$$

• When No gate vanishes on $V(l_1, l_2)$:

• When No gate vanishes on $\mathbb{V}(l_1, l_2)$:

$$C \mod \langle l_1, l_2 \rangle$$
 High Rank Low Rank

Bounding δ_2

• When No gate vanishes on $\mathbb{V}(l_1, l_2)$:

$$\mod \langle l_1, l_2 \rangle$$

$$C = \begin{bmatrix} T_1 & T_2 & T_3 \\ \vdots & \vdots & \vdots \\ T_d & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ T_d & \vdots$$

 $\mathrm{span}(l_1, l_2) \subset \mathrm{span}(l_a, l_b, l_c)$

$$\mod \langle l_1, l_2 \rangle$$

$$C = \begin{pmatrix} l_a \\ l_a \\ l_b \end{pmatrix} + \begin{pmatrix} l_b \\ l_b \\ l_b \end{pmatrix} + \begin{pmatrix} l_c \\ l_b \\ l_b \end{pmatrix}$$

 $\mathrm{span}(l_1, l_2) \subset \mathrm{span}(l_a, l_b, l_c)$

$$\operatorname{mod} \langle l_1, l_2 \rangle$$

$$C = \begin{bmatrix} T_1 & T_2 & T_3 \\ \vdots & \vdots & \vdots \\ I_a^{\bullet \bullet} & \vdots & \vdots \\ I_b^{\bullet \bullet} & \vdots & \vdots \\ I_c^{\bullet \bullet$$

 $\operatorname{span}(l_1, l_2) \subset \operatorname{span}(l_a, l_b, l_c)$ $\operatorname{span}(l_1, l_2) \subset \operatorname{span}(l'_a, l'_b, l'_c)$

 $\mod \langle l_1, l_2 \rangle \quad \operatorname{span}(l_1, l_2) = \operatorname{span}(l_a, l_b, l_c) \cap \operatorname{span}(l'_a, l'_b, l'_c)$

$$C = \begin{bmatrix} l_a \\ l_a \\ \vdots \\ l_b \\ \vdots \\ l_c \\ \vdots \\ l_$$

Bounding δ_2

 $\operatorname{mod} \langle l_1, l_2 \rangle \operatorname{span}(l_1, l_2) = \operatorname{span}(l_a, l_b, l_c) \cap \operatorname{span}(l'_a, l'_b, l'_c)$

$$\mod \langle l_1, l_2 \rangle$$

$$\mod \langle l_1, l_2 \rangle$$

$$C = \begin{pmatrix} T_1 & T_2 & T_3 \\ \vdots & \vdots & \vdots \\ T_n & T_n \end{pmatrix}$$

$$\mod \langle l_1, l_2 \rangle$$

$$C = \begin{pmatrix} I_1 & I_2 & I_3 \\ I_a & I_b & I_b \\ I_b & I_b$$

Bounding S₂

 $\mod \langle l_1, l_2 \rangle$

 $\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l_a, l_b, l_c) = \operatorname{span}(l)$

$$C = \begin{pmatrix} T_1 & T_2 & T_3 \\ & & & \\ & &$$

 $\mod \langle l_1, l_2 \rangle$

 $\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l_a, l_b, l_c) = \operatorname{span}(l)$

Bounding δ_2

$$\mod \langle l_1, l_2 \rangle$$

 $\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l_a, l_b, l_c) = \operatorname{span}(l)$ $\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l'_a, l'_b, l'_c) = \operatorname{span}(l')$

$$C = \begin{bmatrix} T_1 & T_2 & T_3 \\ \vdots & \vdots & \vdots \\ I_a & \vdots & \vdots \\ I_b &$$

Bounding δ_2

 $\mod \langle l_1, l_2 \rangle$

 $span(l_1, l_2) \cap span(l_a, l_b, l_c) = span(l)$ $span(l_1, l_2) \cap span(l'_a, l'_b, l'_c) = span(l')$ $span(l_1, l_2) \cap span(l''_a, l''_b, l''_c) = span(l'')$ T_3

$$\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l_a, l_b, l_c) = \operatorname{span}(l)$$

$$\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l'_a, l'_b, l'_c) = \operatorname{span}(l')$$

$$\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l'_a, l'_b, l'_c) = \operatorname{span}(l')$$

$$\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l''_a, l''_b, l''_c) = \operatorname{span}(l'')$$

$$T_1 \qquad T_2 \qquad T_3$$

$$\operatorname{Case 2: } l \neq l'$$

$$\operatorname{span}(l_a, l_b, l_c, l'_a, l'_b, l'_c)$$

$$\cap \operatorname{span}(l''_a, l''_b, l''_c) \in \operatorname{span}(l_1, l_2)$$

 $\operatorname{span}(l_1, l_2) \cap \operatorname{span}(l_a, l_b, l_c) = \operatorname{span}(l)$ $span(l_1, l_2) \cap span(l'_a, l'_b, l'_c) = span(l')$ $\mod \langle l_1, l_2 \rangle$ $span(l_1, l_2) \cap span(l''_a, l''_b, l''_c) = span(l'')$ Case 2: $l \neq l'$ $span(l_a, l_b, l_c, l'_a, l'_b, l'_c)$ $\in \operatorname{span}(l_1, l_2)$ $\mathrm{span}(l_a'', l_b'', l_c'')$ Number of possibilities for $\mathbb{V}(l_1, l_2)$ is at most d^7

Future Work

• Reconstruction for $\Sigma\Pi\Sigma(k)$ circuits for k>3.

• Proper Learning when rank is small.

Thank You

Questions?