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Arithmetic Circuits

- Clrcult computing a °
polynomial fe [ [x;,...,x,]|

. Gatesare +, X . e °
F}

. Leaves have {xy, ..., Xx,, [} ,

. Edges with labels from [ (1 by
default). ° 0

Figure: Circuit computing xy + 2y?
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e fEeF[xy,...,x,| computedby C € €.
e Given Blackbox access to evaluations of f.

o Efficiently output a circuit C’that computes f.
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* Multivariate Interpolation [BOT83,
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Depth 2 Circuits

211 Circuit [12 Circuit
* Multivariate Interpolation [BOT83, * Factoring [Kal87]
KSO1]
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Depth 3 Circuits

Combination of Factoring and Interpolation work for 11211 circuits
Extremely challenging for 2112 circuits.

Reconstruction for Set-Multilinear 2112 circuits captures Tensor Decomposition.

[Open]: Proper Learning for 211> circuits with Top Fan-in2andn = 5



Hardness for Reconstruction of 2.112. Circuits

* Depth Reduction [GKKS13]

Polytime Reconstruction Subexponential Reconstruction

For 2112 circuits For General circuits

e Polytime PAC Learning for 2112 circuits breaks cryptographic primitives [KSO6].

* Proper Learning for Set-Multilinear 2112 circuits is NP-hard[Has90].
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e Restricted Top Fan-in 2XI12.(k) circuits
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Depth 3 Circuits

e Restricted Top Fan-in 2XI12.(k) circuits sim(C)

d
where each 7, = H l;; and ged(Ty, ..., T;) =1
j=1

e rank(sim(C)) = dim(span({/; : i € [k],j € [d]}))



Polynomial Identity Testing (PIT)

e Checking if the input circuit computes O or not
e Simple Randomized Solution [Sch80, Zip79]

. . Efficient Derandomization



Polynomial Identity Testing (PIT)

e Checking if the input circuit computes O or not
e Simple Randomized Solution [Sch80, Zip79]

. . Efficient Derandomization

¢ Easier than Deterministic Reconstruction.
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* Connections to Discrete Geometry, specifically SG-configurations.
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PIT for 2112(k) Circuits

* Connections to Discrete Geometry, specifically SG-configurations.

1 1, 15
' Coloured
High-Dimensional
C — I + — O Sylvester-Gallai!



PIT for 2112(k) Circuits

* L.ong-line of work [DSO05, KSO8, KS09, SS11, SS13] eventually give
polytime Blackbox PIT when k = O(1).



PIT for 2112(k) Circuits

* L.ong-line of work [DSO05, KSO8, KS09, SS11, SS13] eventually give
polytime Blackbox PIT when k = O(1).

e Identically zero 2112.(k) circuits must be low rank.

rank(sim(C)) < 3k?



Past Work on

Reconstruction of 2112(k)
Clrcuits



k=1or?2

circuits are just I 12 circuits. Factoring [Kal87]

is already challenging, even though PIT is trivial because of Unique
factorization.
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circuits are just I 12 circuits. Factoring [Kal87]

is already challenging, even though PIT is trivial because of Unique
factorization.
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k=1or?2

o 2 112(1) circuits are just 11X circuits. Factoring [Kal87]

» >.112.(2)is already challenging, even though PIT is trivial because of Unique
factorization.

d d
C= H L+ H 5y
j=1 \:1 x
How do we learn these linear forms

From Blackbox access to C?



Past Work

[ShpO7] F, 2I12(2) quasipoly(n,d, | F|)
[KS09] F, 2I12(k), k= O(1) | quasipoly(n,d, |[F|)
[Sin16] F=RorC 2]‘[2(2) p()ly(n, d)

[Sin22] F, SIIX(2) poly(n,d,log|[F|)




Past Work

[ShpO7] F, 2I12(2) quasipoly(n,d, | F|)
[KS09] F, 2I12(k), k= O(1) | quasipoly(n,d, |[F|)
[Sin16] F=RorC 2]‘[2(2) poly(n, d)

[Sin22] F, SIIX(2) poly(n,d,log|[F|)

In all of the above, it is Proper Learning only when rank is high.



e F=RorC, 2II2(3) circuits

e Randomized (nd)?"°29 time Reconstruction algorithm

e Proper learning when rank(sim(7; + 1) 2 c log d for a constant c.



e = RorC, 2IIX(3) circuits
e Randomized (nd)?"°29 time Reconstruction algorithm

e Proper learning when rank(sim(7; + 1) 2 c log d for a constant c.

First Subexponential Reconstruction Algorithm for 2112(3) circuits!



Proof Idea



Proot Outline

e Prove Structural Results about 2112(3) circuits.

* Find few linear forms inside the circuit.

¢ [.earn circuit from tew linear forms.



Proot Outline

e Prove Structural Results about 2112(3) circuits.

* Find few linear forms inside the circuit.

¢ [.earn circuit from tew linear forms.



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, i



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d C mod [,
T, o



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d C mod/, =7, mod [
Tl j=1



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, i



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, ]1} T, mod [,



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, ]1} T, mod [,



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, ]1} T, mod [,



[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
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[Learn Circuit from few linear forms[Shp0O7, KSO9]

d
T, 1 T, mod [,
T, mod [,
C = + ' "2
: Using 2-Query
I, mod /., LDC lower bounds

|ShpO7]



[Learn Circuit from few linear forms[Shp0O7, KSO9]

e [KSO9] generalized this technique to work for projections of 2XI112(k) circuits.



[Learn Circuit from few linear forms[Shp0O7, KSO9]

e [KSO9] generalized this technique to work for projections of 2XI112(k) circuits.

* Where do we get the linear forms?

e [ShpO7, KSO9] Find a variable reduction to log d variables, and brute force over
all linear forms in [F over log d variables.

e Can'tdoitfor R or C
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Vanishing Spaces

\/(ll ’ 129 13)

M
WLy, b5, [5)
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Vanishing Spaces

* &'; be the set of co-dimension 3 vanishing spaces.

* Is S5 finite? 7 T, T,

C= + + \/(lla*a*)
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Vanishing Spaces

oF Sy '3
Codimension 1 spaces Codimension 2 spaces Codimension 3 spaces

not contained in &', not contained in &’; and &,

Are the only spaces where all 1, 15, 15 vanish?
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Example

(X1 + x3)(X) — x3)(x4 + X)) + (X + X5 — X3)(X5 + Sx3) (x5 + 4x3) + (x; + 2x, — 3x3)(Ox3 — 3x,) (x4 + Tx5 + 15x,)

Go mod (x, — 2x;)

(X1 + x3)(x3) (x4 + 2x3) + (X + x3)(Tx3) (x5 + 4x3) + (X + x3)(—x3) (x4 + 7x5 + 30x3) = 0
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Proot Outline

Steps

* [Showing &', &', &3 have size d O() when C has high rank.

* Computing &';, &», 8’5 have in poly(n, d) time.

* Learning O(log d) linear forms from a gate using &', &5, &'s.

* Using techniques from [ShpO7, KS09] to reconstruct the circuit.
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Bounding &',

C mdl=0 ——— [|C

e Degree d polynomial has at most d factors. | & £d

Theorem[DS0O6, ShpO7, KS0O9]

. . From 2-Query LDC
Let Z = {[l:[|sim(C)}. Then dim(span(Z’)) = O(log d)

LLower bounds
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Bounding &5

* Consider ([, [,) € &».

. : When some 7 vanishes on W(/;, [,).

[| T, and [ € span(l;, L,)
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Bounding &5

* Consider ([, [,) € &».
 EASY CASE: When some T’ vanishes on W(/;, /).

[| T, and [ € span(l;, [,)
C mod![#0 ['| (C mod /)

span(/, ") = span(/;, [,)

Possibilities for V(/;, [,) at most d*
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Bounding &5

* When No gate vanishes on W/, [,):

—’ /
¢ mod (1;, L) ¢

High Rank Low Rank

Due to Rank Bounds

From PIT of 2112(k)
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High Rank



Bounding &5
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Bounding &5

mod ([, [,)

15 span(/, l,) C span(l, [, )

| | | span(/y, ,,) C span(l,, [;,[)



Bounding &,

mod {[,, ,) span(/, ,,) = span(l_, [,,[.) N span(/), [}, [’)

Tl 1, T3
C = | | | | |
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mod {[,, ,) span(/, ,,) = span(l_, [,,[.) N span(/), [}, [’)

I 1 13
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Bounding &,
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Bounding &,

mod (/;, ) span(l;, l,) N span(/, [, [.) = span(/)
span(/, ,,) Nspan(l_, ;, 1) = span(l’)

1 1, 13
Casel:[ =1
span(/_, [, )
N e span(/,, [,)
C — + T A VA ¥ o
span(//, [, 1)
Number of possibilities for
W1, L) is at most d°



Bounding &,
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Bounding &,

span(/, l,) Nnspan(l,[,,1.) = span(/)

mod (/,,) span(/;, l,) N span(/;, [;,1.) = span(l’)
span(/y, ,,) Nspan(l, [}, 1) = span(!”)



Bounding &5

mod ([, [,)

span(/, l,) Nnspan(l,[,,1.) = span(/)
span(/, ,,) Nnspan(//, [;, ') = span(/’)
span(/y, ,,) Nspan(l, [}, 1) = span(!”)
15
Case2:[ # [
span(/_, [, ., [, 1, 1)
M

span(l/, 1/, 1) € span(l;, /)



Bounding &5

span(/, l,) Nnspan(l,[,,1.) = span(/)

mod ([, [, span(/, ,,) Nnspan(//, [;, ') = span(/’)
span(/y, ,,) Nspan(l, [}, 1) = span(!”)
1, 15
Case2: [ # [’
span(/_, [, ., [, 1, 1)
1 A [,
span(l/, [, 1) < span(iy, 1)

Number of possibilities for

W1, l,) is at most d’



e Reconstruction for 2I12(k) circuits for k£ > 3.

* Proper Learning when rank is small.



Thank You
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