
Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Derandomizing Polynomial Identity Tests Means
Proving Circuit Lower Bounds

Devansh Shringi Rishabh Batra
CS640 Project

October 6, 2021

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Contents

Introduction

Preliminaries

Lemma 1

Lemma 2

Lemma 3

Proof of Theorem

Conclusion

Open Problems

References

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Introduction

• We present a summarized interpretation of the paper
Derandomizing Polynomial Identity Tests Means Proving
Circuit Lower Bounds [KI03] by Valentine Kabanets and
Russell Impagliazzo, based on our reading of the paper.
• Following is the main theorem of the paper

Theorem

PIT ∈ P =⇒ per 6∈ Arth − P/poly or NEXP 6⊆ P/poly

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Structure

• Preliminaries: Arithmetic circuits, PIT, PRGs
• Lemma 1
PIT ∈ P and per ∈ Arth − P/poly =⇒ Pper ⊆ NP.
• Lemma 2 EXP ⊆ P/poly =⇒ EXP = MA
• Lemma 3 NEXP ∈ P/poly =⇒ NEXP = EXP.
• Proof of Theorem: Combining to get the main theorem.
• Conclusion: Implications and Future Scope

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Arithmetic circuits

• Representation for polynomials
• A Directed Acyclic Graph that computes a polynomial f over
F and set of variables x1, . . . , xn
• Vertices of in-degree 0 labeled with variable or field element
• All other vertices(gates) labeled with + or ×
• Edges labeled with field constants (1 by default)
• Size: number of edges
• For more details on Arithmetic circuits, check [SY10]

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Arithmetic circuits
Example

+

× +

+
+

x y −3

x
y

−3

2

-2

Figure: Circuit computing xy + 2y2

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Polynomial Identity Testing(PIT)

• Efficiently test whether an input polynomial as circuit is
identically zero or not.
• For univariate, just check at degree + 1 points. Doesn’t work

for multivariate.
• For more details on PIT, check [Sax09]

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Randomized Solution

Lemma
(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a
non-zero polynomial of total degree d ≥ 0. Let S be any finite
subset of F, and let α1, . . . , αn be elements selected independently,
uniformly and randomly from S. Then,

Prα1,...,αn∈S [f (α1, . . . , αn) = 0] ≤ d
|S|

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Randomized Solution

Lemma
(PIT Lemma)(Schwartz-Zippel[Sch80]) Let f ∈ F[x1, . . . , xn] be a
non-zero polynomial of total degree d ≥ 0. Let S be any finite
subset of F, and let α1, . . . , αn be elements selected independently,
uniformly and randomly from S. Then,

Prα1,...,αn∈S [f (α1, . . . , αn) = 0] ≤ d
|S|

• Thus PIT ∈ coRP
• Open: Derandomizing PIT in poly(s)-time

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Pseudorandomness Generators(PRGs)

• Decrease the number of random bits required.
• For S : N −→ N, a 2O(n)-computable function

G : {0, 1}∗ −→ {0, 1}∗ is an S − prg , if ∀l ,
G : {0, 1}l −→ {0, 1}S(l), and ∀ circuits C of size ≤ S(l)3

|Prx∈Ul [C(G(x)) = 1]− Prx∈US(l) [C(x) = 1]| < 0.1

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Pseudorandomness Generators(PRGs)

• Decrease the number of random bits required.
• For S : N −→ N, a 2O(n)-computable function

G : {0, 1}∗ −→ {0, 1}∗ is an S − prg , if ∀l ,
G : {0, 1}l −→ {0, 1}S(l), and ∀ circuits C of size ≤ S(l)3

|Prx∈Ul [C(G(x)) = 1]− Prx∈US(l) [C(x) = 1]| < 0.1

• If a S-prg exists then ∀ functions l

BP − TIME (S(l(n))) ⊆ DTIME (2l(n)S(l(n)))

• A 2εl -prg =⇒ BPP=P

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Hardness

• Worst-case Hardness For f : {0, 1}∗ −→ {0, 1}, Hwrs(f) is
the largest S(n) st. ∀ circuit Cn ∈ size(S(n)),

Prx∈Un [Cn(x) = f (x)] < 1

• Average-case Hardness Havg (f) is the largest S(n) st. ∀
circuit Cn ∈ size(S(n)),

Prx∈Un [Cn(x) = f (x)] < 1
2 + 1

S(n)

• Can be shown that a worst-case hard function gives also an
average-case hard function.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

NW-Design

Theorem
If ∃f ∈ E with Havg ≥ S(n), then ∃S ′(l)-prg, where
S ′(l) = S(n)0.01.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 1

Lemma
PIT ∈ P and per ∈ Arth − P/poly =⇒ Pper ⊆ NP.
Proof Idea
• "Guess" the small circuit for permanent and verify it using
PIT ∈ P.
• pern(A) =

∑
i∈[n] A1i .per(A′1i) where A′1i is the corresponding

minor.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

• Let Cn be arithmetic circuit corresponding to the pern.
• Protocol for obtaining the circuit.

1. Given Cn−1, we guess the circuit for Cn as follows:

Cn(A) =
∑
i∈[n]

A1i .Cn−1(A′1i) (1)

2. Use PIT for verifying whether the above expression is correct
or not.

3. Repeat it for circuits Cn−1 which we used for minors and so on.
• Using this recursive guess and verify procedure, we can get a
circuit Cn(A) = pern(A) by induction on n.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

• Now we show Pper ⊆ NP
• Let L ∈ Pper .

Guess Cn for pern using the recursive procedure.
Use this circuit Cn for pern instead of the oracle
• PIT ∈ P, implies the entire verification is in P.
• per ∈ Arth − P/poly , implies the guess that our machine

need to do is poly-sized.
• This gives L ∈ NP =⇒ Pper ⊆ NP

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 2

Lemma
EXP ⊆ P/poly =⇒ EXP = MA
Proof Idea First show EXP ⊆ P/poly =⇒ EXP = Σ2.
• Consider L ∈ EXP, with TM N. Encode steps of N Using the

circuit and ∃∀
• Compute j-th bit of i-th configuration of N(x) in exp-time

=⇒ ∃ poly-size C(x , i , j) computing it.
• x ∈ L ⇐⇒ ∃C ,∀(i , j)[C(x , i , j) −→ C(x , i + 1, j) is a valid
step].
• Thus, EXP = Σ2

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 2

Lemma
EXP ⊆ P/poly =⇒ EXP = MA
Proof Idea contd.
• Σ2 ⊆ PSPACE = IP ⊆ EXP = Σ2, i.e.

PSPACE = IP = EXP ⊆ P/poly .
• We have a IP protocol for L. We convert it one round.
• Prover in IP is a PSPACE machine, simulate using a poly-size
circuit family {Cn}n∈N
• 1-round protocol for checking x ∈ L:
Prover: Send his circuit Cn, for n = |x |.
Verifier: Simulate the IP protocol using Cn as P.
• Thus, EXP = MA

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea
• Assume ∃L ∈ NEXP \ EXP, st. ∃c > 0 and machine R(x , y)

running in exp(|x |10c)

x ∈ L ⇐⇒ ∃y ∈ {0, 1}exp(|x |c)R(x , y) = 1

• y is hard for EXP,we use it compute hard-function, consider
function whose Truth table is y .

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
Consider the machine MD, ∀D > 0 as follows:
• construct tt of all circuits of size n100D, with nc input.
• if ∃C ,R(x , tt) = 1 ACCEPT, else REJECT

Running Time: exp(n100D + n10c)

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
• L 6∈ EXP =⇒ MD cannot solve L
• Therefore, for infinitely many x ’s, y is such that
Hwrs(fy) > n100D.
• Using NW design we have a lD prg.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
• EXP ⊂ NEXP ⊆ P/poly . So from lemma 2, we have an
EXP=MA
• ∀L ∈ EXP, Merlin tries to show that x ∈ L by sending a short
proof to Arthur.
• Arthur verifies it using a randomised algo in say nD steps.
• Using the lD prg, we can reduce the number of random bits

from nD to n for Arthur.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3
Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
• If we have n as the input length of some string which is
"hard" for the tt circuits, we can replace Arthur by a
non-deterministic algorithm in poly(nd)2nc time that does not
toss any random coins by using the prg obtained before (the
2nc factor is for calculating the n random bits
deterministically)
• This gives L ∈ NTIME (2nc′

) "infinitely often" with n-bit
advice. Thus EXP ⊆ NTIME (2nc′

) "infinitely often" with
n-bit advice
• But NEXP ⊆ P/poly . Thus we have NTIME (2nc′

)
⊆ SIZE (nc′) for a constant c ′. So EXP ⊆ SIZE (nc′) infinitely
often (the n bit advice can be hardcoded in the circuit).

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Lemma 3

Lemma
NEXP ⊆ P/poly =⇒ NEXP = EXP
Proof Idea contd.
• ∃ c’ such that every language in EXP can be decided on
infinitely many inputs by a circuit family of size n + nc′ . Yet
this can be ruled out using elementary diagonalization (more
details in the paper)

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Proof of Theorem
Theorem

PIT ∈ P =⇒ per 6∈ Arth − P/poly or NEXP 6⊆ P/poly

• Suppose PIT ∈ P, per ∈ Arth − P/poly and
NEXP ⊆ P/poly .
• From lemmas 2 and 3,NEXP = EXP = MA ⊆ PH.
• Also PH ⊆ Pper (Toda’s theorem)
• So NEXP ⊆ Pper

• Now as we have PIT ∈ P and per ∈ Arth − P/poly , using
lemma 1, we get Pper ⊆ NP
• Combining these two, we get NEXP ⊆ NP which contradicts

the non-deterministic time hierarchy theorem. Thus atleast of
the assumptions is false which gives:

PIT ∈ P =⇒ per 6∈ Arth − P/poly or NEXP 6⊆ P/poly

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Conclusion

• Derandomizing RP or BPP would give us circuit lower bounds
for NEXP or for permanent.
• The results in the present paper do not rule out that ZPP =
P can be proved without having to prove any circuit lower
bounds first. This leaves some hope that unconditional
derandomization of ZPP could be achieved.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Open Problems

• BPP = P, PIT ∈ P, per 6∈ Arth − P/poly and
NEXP 6⊆ P/poly .(we believe all of these to be true)
• Does BPP=P imply circuit lower bounds for EXP (instead of
NEXP) ?

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

Questions

Questions ?

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

References I

Valentine Kabanets and Russell Impagliazzo.
Derandomizing polynomial identity tests meansproving circuit
lower bounds.
ACM symposium on Theory of computing, 2003.

Nitin Saxena.
Progress on polynomial identity testing.
Bulletin of the EATCS, 99:49–79, 2009.
Jacob T Schwart.
Fast probabilistic algorithms for verification of polynomial
identities.
Journal of the ACM (JACM), 1980.

Introduction Preliminaries Lemma 1 Lemma 2 Lemma 3 Proof of Theorem Conclusion Open Problems References

References II

Amir Shpilka and Amir Yehudayoff.
Arithmetic circuits: A survey of recent results and open
questions.
Foundations and Trends in Theoretical Computer Science: Vol.
5, 2010.

	Introduction
	Preliminaries
	Lemma 1
	Lemma 2
	Lemma 3
	Proof of Theorem
	Conclusion
	Open Problems
	References

