Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds

Devansh Shringi Rishabh Batra CS640 Project

October 6, 2021

Contents

Introduction
Preliminaries
Lemma 1
Lemma 2
Lemma 3
Proof of Theorem
Conclusion
Open Problems
References

Introduction

- We present a summarized interpretation of the paper Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds [KI03] by Valentine Kabanets and Russell Impagliazzo, based on our reading of the paper.
- Following is the main theorem of the paper

Theorem

$$
P I T \in P \Longrightarrow \text { per } \notin \text { Arth - P/poly or NEXP } \nsubseteq P / \text { poly }
$$

Structure

- Preliminaries: Arithmetic circuits, PIT, PRGs
- Lemma 1
$P I T \in P$ and per \in Arth $-P /$ poly $\Longrightarrow P^{p e r} \subseteq N P$.
- Lemma $2 E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$
- Lemma 3 NEXP $\in P /$ poly $\Longrightarrow N E X P=E X P$.
- Proof of Theorem: Combining to get the main theorem.
- Conclusion: Implications and Future Scope

Arithmetic circuits

- Representation for polynomials
- A Directed Acyclic Graph that computes a polynomial f over \mathbb{F} and set of variables x_{1}, \ldots, x_{n}
- Vertices of in-degree 0 labeled with variable or field element
- All other vertices(gates) labeled with + or \times
- Edges labeled with field constants (1 by default)
- Size: number of edges
- For more details on Arithmetic circuits, check [SY10]

Arithmetic circuits

Example

Figure: Circuit computing $x y+2 y^{2}$

Polynomial Identity Testing(PIT)

- Efficiently test whether an input polynomial as circuit is identically zero or not.
- For univariate, just check at degree +1 points. Doesn't work for multivariate.
- For more details on PIT, check [Sax09]

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero polynomial of total degree $d \geq 0$. Let S be any finite subset of \mathbb{F}, and let $\alpha_{1}, \ldots, \alpha_{n}$ be elements selected independently, uniformly and randomly from S. Then,

$$
\operatorname{Pr}_{\alpha_{1}, \ldots, \alpha_{n} \in S}\left[f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

Randomized Solution

Lemma

(PIT Lemma)(Schwartz-Zippel[Sch80]) Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a non-zero polynomial of total degree $d \geq 0$. Let S be any finite subset of \mathbb{F}, and let $\alpha_{1}, \ldots, \alpha_{n}$ be elements selected independently, uniformly and randomly from S. Then,

$$
\operatorname{Pr}_{\alpha_{1}, \ldots, \alpha_{n} \in S}\left[f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

- Thus PIT \in coRP
- Open: Derandomizing PIT in poly(s)-time

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S: \mathbb{N} \rightarrow \mathbb{N}$, a $2^{O(n)}$-computable function $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is an $S-p r g$, if $\forall I$, $G:\{0,1\}^{\prime} \rightarrow\{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^{3}$

$$
\left|\operatorname{Pr}_{x \in U_{l}}[C(G(x))=1]-\operatorname{Pr}_{x \in U_{S(1)}}[C(x)=1]\right|<0.1
$$

Pseudorandomness Generators(PRGs)

- Decrease the number of random bits required.
- For $S: \mathbb{N} \rightarrow \mathbb{N}$, a $2^{O(n)}$-computable function $G:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is an $S-p r g$, if $\forall I$, $G:\{0,1\}^{\prime} \rightarrow\{0,1\}^{S(I)}$, and \forall circuits C of size $\leq S(I)^{3}$

$$
\left|\operatorname{Pr}_{x \in U_{l}}[C(G(x))=1]-\operatorname{Pr}_{x \in U_{S(1)}}[C(x)=1]\right|<0.1
$$

- If a S-prg exists then \forall functions /

$$
B P-\operatorname{TIME}(S(I(n))) \subseteq D \operatorname{TIME}\left(2^{\prime(n)} S(I(n))\right)
$$

- $\mathrm{A} 2^{\epsilon!}$ - $\mathrm{prg} \Longrightarrow \mathrm{BPP}=\mathrm{P}$

Hardness

- Worst-case Hardness For $f:\{0,1\}^{*} \rightarrow\{0,1\}, H_{w r s}(f)$ is the largest $S(n)$ st. \forall circuit $C_{n} \in \operatorname{size}(S(n))$,

$$
\operatorname{Pr}_{x \in U_{n}}\left[C_{n}(x)=f(x)\right]<1
$$

- Average-case Hardness $H_{\text {avg }}(f)$ is the largest $S(n)$ st. \forall circuit $C_{n} \in \operatorname{size}(S(n))$,

$$
\operatorname{Pr}_{x \in U_{n}}\left[C_{n}(x)=f(x)\right]<\frac{1}{2}+\frac{1}{S(n)}
$$

- Can be shown that a worst-case hard function gives also an average-case hard function.

NW-Design

Theorem
If $\exists f \in E$ with $H_{\text {avg }} \geq S(n)$, then $\exists S^{\prime}(I)$-prg, where $S^{\prime}(I)=S(n)^{0.01}$.

Lemma 1

Lemma
$P I T \in P$ and per \in Arth $-P /$ poly $\Longrightarrow P^{\text {per }} \subseteq N P$.

Proof Idea

- "Guess" the small circuit for permanent and verify it using $P I T \in P$.
- $\operatorname{per}_{n}(A)=\sum_{i \in[n]} A_{1 i} \cdot \operatorname{per}\left(A_{1 i}^{\prime}\right)$ where $A_{1 i}^{\prime}$ is the corresponding minor.
- Let C_{n} be arithmetic circuit corresponding to the per $_{n}$.
- Protocol for obtaining the circuit.

1. Given C_{n-1}, we guess the circuit for C_{n} as follows:

$$
\begin{equation*}
C_{n}(A)=\sum_{i \in[n]} A_{1 i} \cdot C_{n-1}\left(A_{1 i}^{\prime}\right) \ldots \ldots \tag{1}
\end{equation*}
$$

2. Use PIT for verifying whether the above expression is correct or not.
3. Repeat it for circuits C_{n-1} which we used for minors and so on.

- Using this recursive guess and verify procedure, we can get a circuit $C_{n}(A)=\operatorname{per}_{n}(A)$ by induction on n.
- Now we show $P^{p e r} \subseteq N P$
- Let $L \in P^{p e r}$. Guess C_{n} for per $_{n}$ using the recursive procedure. Use this circuit C_{n} for per $_{n}$ instead of the oracle
- $P I T \in P$, implies the entire verification is in P.
- per \in Arth $-P /$ poly, implies the guess that our machine need to do is poly-sized.
- This gives $L \in N P \Longrightarrow P^{p e r} \subseteq N P$

Lemma 2

Lemma

$E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$
Proof Idea First show $E X P \subseteq P /$ poly $\Longrightarrow E X P=\Sigma_{2}$.

- Consider $L \in E X P$, with TM N. Encode steps of N Using the circuit and $\exists \forall$
- Compute j-th bit of i-th configuration of $N(x)$ in exp-time $\Longrightarrow \exists$ poly-size $C(x, i, j)$ computing it.
- $x \in L \Longleftrightarrow \exists C, \forall(i, j)[C(x, i, j) \rightarrow C(x, i+1, j)$ is a valid step].
- Thus, EXP $=\Sigma_{2}$

Lemma 2

Lemma
$E X P \subseteq P /$ poly $\Longrightarrow E X P=M A$

Proof Idea contd.

- $\Sigma_{2} \subseteq P S P A C E=I P \subseteq E X P=\Sigma_{2}$, i.e.
$P S P A C E=I P=E X P \subseteq P /$ poly.
- We have a IP protocol for L. We convert it one round.
- Prover in IP is a PSPACE machine, simulate using a poly-size circuit family $\left\{C_{n}\right\}_{n \in \mathbb{N}}$
- 1-round protocol for checking $x \in L$:

Prover: Send his circuit C_{n}, for $n=|x|$.
Verifier: Simulate the IP protocol using C_{n} as P.

- Thus, $E X P=M A$

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea

- Assume $\exists L \in N E X P \backslash E X P$, st. $\exists c>0$ and machine $R(x, y)$ running in $\exp \left(|x|^{10 c}\right)$

$$
x \in L \Longleftrightarrow \exists y \in\{0,1\}^{\exp \left(|x|^{c}\right)} R(x, y)=1
$$

- y is hard for EXP, we use it compute hard-function, consider function whose Truth table is y.

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea contd.

Consider the machine $M_{D}, \forall D>0$ as follows:

- construct $t t$ of all circuits of size $n^{100 D}$, with n^{c} input.
- if $\exists C, R(x, t t)=1$ ACCEPT, else REJECT

Running Time: $\exp \left(n^{100 D}+n^{10 c}\right)$

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$
Proof Idea contd.

- $L \notin E X P \Longrightarrow M_{D}$ cannot solve L
- Therefore, for infinitely many x 's, y is such that $H_{\text {wrs }}\left(f_{y}\right)>n^{100 D}$.
- Using NW design we have a I^{D} prg.

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea contd.

- EXP $\subset N E X P \subseteq P /$ poly. So from lemma 2, we have an $\mathrm{EXP}=\mathrm{MA}$
- $\forall L \in E X P$, Merlin tries to show that $x \in L$ by sending a short proof to Arthur.
- Arthur verifies it using a randomised algo in say n^{D} steps.
- Using the I^{D} prg, we can reduce the number of random bits from n^{D} to n for Arthur.

Lemma 3

Lemma
$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$

Proof Idea contd.

- If we have n as the input length of some string which is "hard" for the tt circuits, we can replace Arthur by a non-deterministic algorithm in poly $\left(n^{d}\right) 2^{n^{c}}$ time that does not toss any random coins by using the prg obtained before (the $2^{n^{c}}$ factor is for calculating the n random bits deterministically)
- This gives $L \in \operatorname{NTIME}\left(2^{n^{c^{\prime}}}\right)$ "infinitely often" with n-bit advice. Thus EXP \subseteq NTIME ($\left.2^{n^{c^{\prime}}}\right)$ "infinitely often" with n-bit advice
- But NEXP $\subseteq P /$ poly. Thus we have NTIME $\left(2^{n^{c^{\prime}}}\right)$ $\subseteq \operatorname{SIZE}\left(n^{c^{\prime}}\right)$ for a constant c^{\prime}. So $E X P \subseteq \operatorname{SIZE}\left(n^{c^{\prime}}\right)$ infinitely often (the n bit advice can be hardcoded in the circuit).

Lemma 3

Lemma

$N E X P \subseteq P /$ poly $\Longrightarrow N E X P=E X P$
Proof Idea contd.

- \exists c' such that every language in EXP can be decided on infinitely many inputs by a circuit family of size $n+n^{c^{\prime}}$. Yet this can be ruled out using elementary diagonalization (more details in the paper)

Proof of Theorem

Theorem

$$
P I T \in P \Longrightarrow \text { per } \notin \text { Arth }-P / \text { poly or NEXP } \nsubseteq P / \text { poly }
$$

- Suppose PIT $\in P$, per \in Arth $-P /$ poly and $N E X P \subseteq P /$ poly .
- From lemmas 2 and $3, N E X P=E X P=M A \subseteq P H$.
- Also $P H \subseteq P^{\text {per }}$ (Toda's theorem)
- So $N E X P \subseteq P^{p e r}$
- Now as we have PIT $\in P$ and per \in Arth $-P /$ poly, using lemma 1, we get $P^{p e r} \subseteq N P$
- Combining these two, we get $N E X P \subseteq N P$ which contradicts the non-deterministic time hierarchy theorem. Thus atleast of the assumptions is false which gives:

$$
P I T \in P \Longrightarrow \text { per } \notin \text { Arth }-P / \text { poly or NEXP } \nsubseteq P / \text { poly }
$$

Conclusion

- Derandomizing RP or BPP would give us circuit lower bounds for NEXP or for permanent.
- The results in the present paper do not rule out that $\mathrm{ZPP}=$ P can be proved without having to prove any circuit lower bounds first. This leaves some hope that unconditional derandomization of ZPP could be achieved.

Open Problems

- $B P P=P, P I T \in P$, per \notin Arth $-P /$ poly and NEXP $\nsubseteq P /$ poly. (we believe all of these to be true)
- Does BPP=P imply circuit lower bounds for EXP (instead of NEXP) ?

Questions

Questions ?

References I

囯 Valentine Kabanets and Russell Impagliazzo.
Derandomizing polynomial identity tests meansproving circuit lower bounds.
ACM symposium on Theory of computing, 2003.
Nitin Saxena.
Progress on polynomial identity testing.
Bulletin of the EATCS, 99:49-79, 2009.
國 Jacob T Schwart.
Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM (JACM), 1980.

References II

Amir Shpilka and Amir Yehudayoff.Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science: Vol. 5, 2010.

