Constructions over Finite Fields with Applications to Local Ramanujan Graph and Algebraic Dependence

Devansh Shringi Advisor: Prof. Nitin Saxena

May 30, 2022

Introduction

Expanders

- Expanders are sparse graphs with strong connectivity properties.
- Connectivity quantified by Vertex, Edge or Spectral expansion.
- (n, d, λ)-expander d regular graph on n-vertices with second-largest eigenvalue≤ λ.

Expanders

- Decreasing random bits
- Designing error correcting codes, extractors, pseudo-random generators
- Proving complexity results
- optimal and cost-efficient computer networks

Ramanujan Graphs

- In [Nil91], gave a lower bound on the second-largest eigenvalue of the adjacency matrix of a *d*-regular graph of $2\sqrt{d-1}$
- (n, d, λ) -expander is a Ramanujan graph if $\lambda \leq 2\sqrt{d-1} + o(1)$

Locality

- *d*-regular G, |V| = n, with functions f_1, \ldots, f_d , $f_i : V \to V$ with $f_i(v)$ -being the *i*-th neighbor of v in G
- If each output a bit of *f* depends on at most *t* input bits, *f* is a *t*-local function.
- Constant locality \implies NC⁰ circuit for f_i .

Algebraic Dependence

- For polynomials $f_1, \ldots, f_m \in \mathbb{F}[x_1, \ldots, x_n]$, exists a polynomial $A \in \mathbb{F}[x_1, \ldots, x_m]$ $A(f_1, \ldots, f_m) = 0$
- Open for small characteristic finite fields and **f** having large inseparable degree.

Preliminaries

Cayley and Schreier Graphs

Definition

(Cayley graph, [VW18]) Let H be a group. Given a multiset S of elements from H, we form the Cayley graph Cay(H, S) whose vertices are H and where a vertex $h \in H$ has neighbors sh, for every element $s \in S$.

Cayley and Schreier Graphs

Definition

(Schreier graph, [VW18]) Suppose that H is a group acting on a set V, namely there is a homomorphism from H to the group of permutations of V. Then we define the Schreier graph Sch(H, S, V), whose vertices are V and where the vertex $v \in V$ has neighbors sv, for every element $s \in S$.

Linear Groups

Definition

(Special linear group) The special linear group of degree n over R, denoted by SL(n, R), is defined as the set of $n \times n$ invertible matrices with determinant 1 having entries from R, with the operation being the matrix multiplication over R.

Linear Groups

Definition

(Center of a group) The center of a group *G* is defined as the set of elements that commute with every element of *G*. It is denoted as $Z(G) := \{z \in G \mid \forall g \in G, zg = gz\}.$

Definition

(Projective special linear group) The projective special linear group, PSL(V) is the quotient group defined as PSL(V) := SL(V)/Z(V), where SL(V) is the special linear group of V and Z(V) is the center of SL(V).

Jacobian

Definition (Jacobian)

The Jacobian matrix of polynomials $\mathbf{f} \in \mathbb{F}[\mathbf{x}]$ is defined as the matrix $\mathcal{J}_{\mathbf{x}}(\mathbf{f}) = (\partial_{x_j}(f_i))_{m \times n}$.

Inseparability

- If a polynomial f ∈ 𝔅[x] has no multiple roots in its splitting field, then it is separable.
- Irreducible polynomial will be separable if the derivative is zero.
- For char=0, irreducible are always separable.
- An algebraic extension 𝔼/𝔅 is separable if the minimal polynomial of every element α ∈ 𝔅 over 𝔅 is separable.

Inseparability

- If a polynomial f ∈ 𝔽[x] has no multiple roots in its splitting field, then it is separable.
- Irreducible polynomial will be separable if the derivative is zero.
- For char=0, irreducible are always separable.
- An algebraic extension \mathbb{E}/\mathbb{F} is separable if the minimal polynomial of every element $\alpha \in \mathbb{E}$ over \mathbb{F} is separable.

Inseparable degree

- We will mainly work with the extension $\mathbb{F}(\mathbf{x})/\mathbb{F}(\mathbf{f})$.
- The inseparable degree of the extension $\mathbb{F}(x_1, \ldots, x_n)/\mathbb{F}(f_1, \ldots, f_m)$ is defined as p^m for the minimum m such that for all $i \in [n]$, the minimal polynomial of $x_i^{p^m}$ is separable over $\mathbb{F}(f_1, \ldots, f_m)$.

Related Work

Existence and Construction of Ramanujan Graphs

00000

Introduction Preliminaries Related Work $\text{Deg } p^k + 1, p > 5$ $\text{Deg } 3^k + 1$ $\text{Deg } 2^k + 1$ Algebraic Dependence Questions? Ref.

- In [LPS88], Construction of Ramanujan Graphs for degree p + 1 for all prime p
- In [Mor94], Extended the construction to degree *q* + 1, *q* is any prime power
- In [MSS18], showed the Existence for any degree and size bipartite Ramanujan Graphs

One-Local Expanders

- Existence and Construction of Local expanders was answered in [VW18].
- For every n and large enough d, Gave explicit construction of One-local Expanders over vertices {0,1}ⁿ with second eigenvalue ≤ d^{-Ω(1)}

Local Ramanujan Graphs of deg=3

- In [VW18], they also gave construction of constant locality 3-regular bipartite Ramanujan Graphs on vertex set $\{0,1\}^n \times \{0,1\}$ for $n = 4 \cdot 3^t$
- Localized Construction from [Mor94] for degree 3.

Local Ramanujan Graphs

- Construction for deg> 3 was left open in [VW18].
- Construction in [AC02] of unique-neighbor expanders require Ramanujan graphs of degree 4, 8, 44.
- Giving local construction of these Ramanujan graphs allows construction of local unique-neighbor expanders

Deg $p^k + 1, p \ge 5$

- Consider *ϵ* non-square in 𝔽_q, *g* ∈ 𝔽_q[*x*] even degree *d* irreducible.
- $\mathbb{F}_{q^d} = \mathbb{F}_q[x]/\langle g(x) \rangle$, $L \in \mathbb{F}_{q^d}$ $L^2 = \epsilon$.
- $\gamma_i, \delta_i \in \mathbb{F}_q$ are all the q+1 solutions in \mathbb{F}_q of $\delta_i^2 \epsilon \gamma_i^2 = 1$

- Consider *ϵ* non-square in 𝔽_q, *g* ∈ 𝔽_q[*x*] even degree *d* irreducible.
- $\mathbb{F}_{q^d} = \mathbb{F}_q[x]/\langle g(x) \rangle$, $L \in \mathbb{F}_{q^d}$ $L^2 = \epsilon$.
- $\gamma_i, \delta_i \in \mathbb{F}_q$ are all the q+1 solutions in \mathbb{F}_q of $\delta_i^2 \epsilon \gamma_i^2 = 1$

$$\Gamma_i = \frac{1}{\sqrt{x}} \begin{pmatrix} 1 & \gamma_i - \delta_i L \\ (\gamma_i + \delta_i L)(x - 1) & 1 \end{pmatrix} \qquad \forall i \in \{1, \dots, q + 1\}$$

If x is a square mod g(x), then Cay(PSL(2, $\mathbb{F}_{q^d})$, Γ) is a q + 1 regular Ramanujan graph.

Required Properties

For the extension \mathbb{F}_{q^d} to work, we want g(x) such that

- g is a family of irreducible polynomials, even degree
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g \rangle$ PSL
- L ∉ 𝔽_q but L² ∈ 𝔽_q (as we want L² = ϵ where ϵ is a non-square in 𝔽_q).
- *L* has constant sparsity (multiplication with Γ_i)

The Polynomial Family

$$g_t(x) := (x^{3^t} - b_1)^2 - \alpha \cdot b_2^2 , \qquad \forall t \in \mathbb{Z}_{\geq 0} .$$

•
$$L = x^{3^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{\alpha} \cdot b_2$ is non-cube in \mathbb{F}_{q^2}
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g_0 \rangle \to \sqrt{x} \in \mathbb{F}_q[x]/\langle g_t \rangle, \forall t \ge 1$
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a cube.
- There are at least $(q^2 1)/6$ such pairs of (b_1, b_2)

The Polynomial Family

$$g_t(x) \ := \ (x^{3^t} - b_1)^2 - lpha \cdot b_2^2 \ , \qquad orall t \in \mathbb{Z}_{\geq 0} \ .$$

•
$$L = x^{3^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{lpha} \cdot b_2$ is non-cube in \mathbb{F}_{q^2}
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g_0 \rangle \to \sqrt{x} \in \mathbb{F}_q[x]/\langle g_t \rangle, \forall t \ge 1$
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a cube.
- There are at least $(q^2 1)/6$ such pairs of (b_1, b_2)

The Polynomial Family

$$g_t(x) := (x^{3^t} - b_1)^2 - \alpha \cdot b_2^2 , \qquad \forall t \in \mathbb{Z}_{\geq 0} .$$

•
$$L = x^{3^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{\alpha} \cdot b_2$ is non-cube in \mathbb{F}_{q^2}
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g_0 \rangle \to \sqrt{x} \in \mathbb{F}_q[x]/\langle g_t \rangle, \forall t \ge 1$
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a cube.
- There are at least $(q^2 1)/6$ such pairs of (b_1, b_2)

The Polynomial Family

$$g_t(x) \ := \ (x^{3^t} - b_1)^2 - lpha \cdot b_2^2 \ , \qquad orall t \in \mathbb{Z}_{\geq 0} \ .$$

•
$$L = x^{3^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{lpha} \cdot b_2$ is non-cube in \mathbb{F}_{q^2}
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g_0 \rangle \to \sqrt{x} \in \mathbb{F}_q[x]/\langle g_t \rangle, \forall t \ge 1$
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a cube.
- There are at least $(q^2-1)/6$ such pairs of (b_1, b_2)

The Polynomial Family

$$g_t(x) \ := \ (x^{3^t} - b_1)^2 - lpha \cdot b_2^2 \ , \qquad orall t \in \mathbb{Z}_{\geq 0} \ .$$

•
$$L = x^{3^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{lpha} \cdot b_2$ is non-cube in \mathbb{F}_{q^2}
- $\sqrt{x} \in \mathbb{F}_q[x]/\langle g_0 \rangle \to \sqrt{x} \in \mathbb{F}_q[x]/\langle g_t \rangle, \forall t \ge 1$
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a cube.
- There are at least $(q^2 1)/6$ such pairs of (b_1, b_2)

Example

Consider Example of q = 5

- $\alpha = 2$, $b_1 = b_2 = 1$, $g_t = (x^{3^t} 1)^2 2$. Check irreducibility of $(x^3 1)^2 2$ in $\mathbb{F}_5[x]$ and the existence of $\sqrt{x} = x + 2$ in $\mathbb{F}_5[x]/\langle (x 1)^2 2 \rangle$.
- For $\alpha = 3$, $b_1 = b_2 = 3$, $g_t = (x^{3^t} 1)^2 2$.
- Can be done in randomized poly(log q) time.

Simplification

- Need Simpler vertex set
- Center of $SL(2, \mathbb{F}_{q^d})$ is ± 1
- Action of $\mathsf{PSL}(2, \mathbb{F}_{q^d})$ on $\mathcal{V} := \{\{v, -v\} | v \in (\mathbb{F}_{q^d}^2 \setminus \{\mathbf{0}\})\}$ defined for $A \in \mathsf{PSL}(2, \mathbb{F}_{q^d})$ as $\{v, -v\} \mapsto \{Av, -Av\}$
- Still need to handle multiplication by $\frac{1}{\sqrt{x}}$

Bipartite Operations

Definition

(Bipartite double cover of a graph, [VW18]) Let G be a graph on vertex set V where vertex v has neighbors $f_i(v)$, $\forall i \in I$. The double-cover of G is the bipartite graph $V \times \{0, 1\}$ where a vertex (v, b) has neighbors $(f_i(v), 1 - b)$, $\forall i \in I$.

Definition

(π -twist of a graph, [VW18]) Let *G* be a bipartite graph on vertex set $V \times \{0,1\}$, where vertex (v, b) has neighbors $(f_i(v), 1-b), \forall i \in I$ and π be a permutation on the vertex set. The π -twist of *G* is the bipartite graph G_0 having the same set of vertices with the modification: vertex $(v, 0) \in G_0$ has neighbors $(\pi f_i v, 1)$, and equivalently vertex $(v, 1) \in G_0$ has neighbors $(f_i \pi^{-1} v, 0), \forall i \in I$.

Bipartite Operations

Definition

(Bipartite double cover of a graph, [VW18]) Let G be a graph on vertex set V where vertex v has neighbors $f_i(v)$, $\forall i \in I$. The double-cover of G is the bipartite graph $V \times \{0, 1\}$ where a vertex (v, b) has neighbors $(f_i(v), 1 - b)$, $\forall i \in I$.

Definition

(π -twist of a graph, [VW18]) Let *G* be a bipartite graph on vertex set $V \times \{0, 1\}$, where vertex (v, b) has neighbors $(f_i(v), 1 - b), \forall i \in I$ and π be a permutation on the vertex set. The π -twist of *G* is the bipartite graph G_0 having the same set of vertices with the modification: vertex $(v, 0) \in G_0$ has neighbors $(\pi f_i v, 1)$, and equivalently vertex $(v, 1) \in G_0$ has neighbors $(f_i \pi^{-1} v, 0), \forall i \in I$.

Final Structure

- Take Double Cover of Sch(PSL(2, F_{q^d}), Γ, V)
- Apply π -twist, equivalent of multiplication with $\frac{1}{\sqrt{x}}$
- $(\{v, -v\}, 0)$ connected to $(\{\Gamma_i v, -\Gamma_i v\}, 1)$
- Constant sparsity \implies Constant additions $\implies O(\log(q))$ locality

Deg $3^k + 1$

The difference

- $q^2 1$ no longer divisible by 3! Therefore, all elements in \mathbb{F}_{q^2} are cubes.
- For k > 1, there must be a prime r > 3, that divides $q^2 1$
- For q = 3, we will need to go o \mathbb{F}_{q^4} instead of \mathbb{F}_{q^2}

k > 1

Let *r* be the smallest prime > 3 dividing $q^2 - 1$. Fix α to be a non-square in \mathbb{F}_q , and for some $b_1, b_2 \in \mathbb{F}_q$

$$g_t(x) := (x^{r^t} - b_1)^2 - \alpha \cdot b_2^2, \qquad \forall t \in \mathbb{Z}_{\geq 0}.$$

•
$$L = x^{r^t} - b_1$$
 for $\epsilon = \alpha \cdot b_2^2$

- $g_t(x)$ is irreducible in $\mathbb{F}_q[x]$ iff $b_1 + \sqrt{\alpha} \cdot b_2$ is non-*r*th root in \mathbb{F}_{q^2} .
- So $\exists b_1, b_2$ s.t. $b_1 + \sqrt{\alpha} \cdot b_2$ is a square but not a *r*-th root.
- There are at least $\frac{(r-2)(q^2-1)}{2r}$ such pairs of (b_1, b_2)

Deg = 4

• $\epsilon = 2$ in this case

We use the family

$$g_t(x) = (x^{5^t} + 1)^4 + x^{5^t}$$

- Factors as product of $(x^{5^t} (1 \pm \sqrt{1 \pm \sqrt{2}})^2)$
- $(1\pm\sqrt{1\pm\sqrt{2}})^2$ isn't a 5-th power and is a square in \mathbb{F}_{q^4}

•
$$L = x^{3 \cdot 5^t} + x^{2 \cdot 5^t} + x^{5^t} + 1$$
 satisfies $L^2 = 2$ in \mathbb{F}_{q^d}

Deg $2^k + 1$

Original Construction

- Consider ϵ st $x^2 + x + \epsilon$ is irreducible in \mathbb{F}_q , $g \in \mathbb{F}_q[x]$ even degree d irreducible.
- $\mathbb{F}_{q^d} = \mathbb{F}_q[x]/\langle g(x) \rangle$, $L \in \mathbb{F}_{q^d}$ $L^2 + L + \epsilon = 0$.
- $\gamma_i, \delta_i \in \mathbb{F}_q$ are all the q+1 solutions in \mathbb{F}_q of $\gamma_i^2 + \gamma_i \delta_i + \delta_i^2 \epsilon = 1$

Original Construction

- Consider *ϵ* st *x*² + *x* + *ϵ* is irreducible in 𝔽_q, *g* ∈ 𝔽_q[*x*] even degree *d* irreducible.
- $\mathbb{F}_{q^d} = \mathbb{F}_q[x]/\langle g(x) \rangle$, $L \in \mathbb{F}_{q^d}$ $L^2 + L + \epsilon = 0$.
- $\gamma_i, \delta_i \in \mathbb{F}_q$ are all the q + 1 solutions in \mathbb{F}_q of $\gamma_i^2 + \gamma_i \delta_i + \delta_i^2 \epsilon = 1$

$$\Gamma_i = \frac{1}{\sqrt{1+x}} \begin{pmatrix} 1 & \gamma_i + \delta_i L \\ (\gamma_i + \delta_i L + \delta_i) x & 1 \end{pmatrix} \quad \forall i \in \{1, \dots, q+1\}$$

Cay(PSL(2, \mathbb{F}_{q^d}), Γ) is a q + 1 regular Ramanujan graph.

Polynomial family

For any ϵ such that $x^2 + x + \epsilon$ is irreducible over \mathbb{F}_q , we choose $g_t(x)$ as

$$g_t(x) := (b_2 \cdot x^{3^t} - b_1)^2 + (b_2 \cdot x^{3^t} - b_1) + \epsilon$$

- $L = b_2 \cdot x^{3^t} b_1$ is constant sparsity.
- Let $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ be a root of $x^2 + x + \epsilon$, then g_t is irreducible iff $\frac{\alpha + b_1}{b_2}$ and $\frac{\alpha + b_1 + 1}{b_2}$ are not cubes in \mathbb{F}_{q^2}
- As char= 2, everything has a square root

Polynomial family

For any ϵ such that $x^2 + x + \epsilon$ is irreducible over \mathbb{F}_q , we choose $g_t(x)$ as

$$g_t(x) := (b_2 \cdot x^{3^t} - b_1)^2 + (b_2 \cdot x^{3^t} - b_1) + \epsilon$$

- $L = b_2 \cdot x^{3^t} b_1$ is constant sparsity.
- Let $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$ be a root of $x^2 + x + \epsilon$, then g_t is irreducible iff $\frac{\alpha + b_1}{b_2}$ and $\frac{\alpha + b_1 + 1}{b_2}$ are not cubes in \mathbb{F}_{q^2}
- As char= 2, everything has a square root

Final Structure

- $PSL(2, \mathbb{F}_{2^d})$ isomorphic to $SL(2, \mathbb{F}_{2^d})$, so we can use vertex set $\mathbb{F}_q^n \setminus \{\mathbf{0}\}$
- We go to Schreier, then take double cover and twist to remove multiplication with $\frac{1}{\sqrt{1+x}}$

Algebraic Dependence

General Results

- If f₁,..., f_m ∈ 𝔽[x₁,] are dependent in 𝔼/𝔽, then they are also dependent in 𝔽.
- f_1, \ldots, f_m alg. dependent polynomials, $\exists A \in \mathbb{F}[y_1, \ldots, f_m]$ with deg $(A) \leq \prod_{i=1}^m \deg(f_i)$ such that $A(f_1, \ldots, f_m) = 0$.
- In [GSS19], Testing Algebraic Dependence of input polynomials f_1, \ldots, f_n is in $AM \cap coAM$.

Large Fields

- Let f ⊂ F[x] polynomials of deg≤ d, and trdeg_F(f) is bounded r. If char(F) > d^r or char(F) = 0, then trdeg_F(f) is equal to the rank of the Jacobian matrix, i.e. rank_{F[x]}J_x(f).
- In [PSS16], it was shown that Jacobian being 0 shows either the polynomials are dependent or independent but inseparable.

Low Inseparable Degree

- *H*(*f*(**x**)) = *f*(**x** + **a**) − *f*(**a**), where *a* is formal variable representing random shift in Fⁿ
- Relating Functional Dependence and Algebraic Dependence, they showed Algebraic dependence being equal to H_t(f_n) ≡ 0 modulo (1, H_t(f₁),..., H_t(f_{n-1}))^t (t is inseparable degree)
- Doing the computation in monomial space of *n*-variate degree $\leq t$, gives $poly(s, \binom{n+t}{n})$ time algorithm

Example

•
$$f_i := x_i^p - x_{i+1}$$
 for $i \in [n-1]$ and $f_n := x_n$ in $\mathbb{F}_p[x]$

• Jacobian vanishes, minimal polynomial

$$y^{p^{n-i}} = f_n + \sum_{j=1}^{n-i} f_{n-j}^{p^j}$$

• Inseparable degree p^n , exponential even in \mathbb{F}_2 with Quadratics

Our Approach

- Output a certificate for input algebraically independent polynomials in poly-time.
- Preprocessing
 - 1. Applying the random shift $H(f_i) = f(\mathbf{x} + \mathbf{z}) f(\mathbf{z})$
 - 2. Substitution $x_i \rightarrow \sqrt{x_i}$ if there is only x_i^2 in all f_j 's
 - 3. Substitution $f_i \rightarrow \sqrt{f_i}$ if f_i is a square
 - Minimal condition No subset {f₁,..., f_r} such that the polynomials in it has only ≤ r < n variables.

Small cases

• Case: m = 2

- 1. Linear parts independent
- 2. linear terms l_1 and αl_1 , $f_2 := f_1 \alpha f_2$ and $f_2 := \sqrt{f_2}$ removing inseparability

Small Cases

 $f_1 : x_1 x_2$ $f_2 : x_2 x_3$ $f_3 : x_3 x_1$

Becomes $f_1 = x_1 + Q_1$ and $f_2 = x_2 + Q_2$, and $f_3 = x_3^2 + x_1x_2$

Least Monomial Independence

- For a monomial ordering, Independence of Least monomials of $f \implies$ Independence of f.
- Using $LM(f_1 \cdot f_2) = LM(f_1) \cdot LM(f_2)$ and $LM(f_1 + f_2) = min(LM(f_1), LM(f_2))$.

Small cases

Case: m = 3

 $f_1 : x_1 x_2$ $f_2 : x_2 x_3$ $f_3 : x_3 x_1$

Becomes $f_1 = x_1 + Q_1$ and $f_2 = x_2 + Q_2$, and $f_3 = x_3^2 + x_1x_2$

 Consider in grevlex ordering, LM(f₁) = x₁, LM(f₂) = x₂, LM(f₃) = x₃², hence certificate of independence

Small cases

- Case: $\mathbf{m} = \mathbf{4}, \mathbf{5}$ $f_1 = x_1 + Q_1, f_2 = x_2 + Q_2, f_3 = x_3^2 + Q_3, f_4 = l_4 + x_4^2 + Q_4, l_4$ has x_1, x_2, x_3
- We can use Frobenius powering to remove x_3 , by $f_4 := f_4^2 + f_3$
- Number of monomials remain same

Worst Case

$$f_{1}: x_{1} + x_{2}^{2} + x_{4}^{2}$$

$$f_{2}: x_{2} + x_{1}^{2}$$

$$f_{3}: x_{3} + x_{2}^{2}$$

$$f_{4}: x_{4} + x_{3}x_{6}$$

$$f_{5}: x_{5}^{2} + x_{2}x_{3}$$

$$f_{6}: x_{5} + x_{6}^{2}$$

Occurs when $m \ge 6$.

Possible approach

Introduction Preliminaries Related Work $\text{Deg } p^k + 1, p > 5$ $\text{Deg } 3^k + 1$ $\text{Deg } 2^k + 1$ Algebraic Dependence Questions? Ref.

00000000000000

Use a weighted monomial ordering, and get system of inequalities

$$w_{1} < 2w_{2}, w_{1} < 2w_{4}, w_{1} < 2w_{3}, w_{1} < 2w_{6}$$

$$w_{2} < 2w_{1}$$

$$w_{3} < 2w_{2}$$

$$w_{4} < w_{3} + w_{6}$$

$$2w_{5} < w_{2} + w_{3}, w_{5} < w_{1}, w_{5} < w_{2}$$

$$4w_{6} < w_{2} + w_{3}$$

If there is solution \implies Independence. Working on proving that Independence \implies Solution.

Questions?

- We gave an explicit construction of bipartite Ramanujan Graphs of degree q + 1, for all prime power q, with locality $O(\log q)$.
- We also explored an approach for testing algebraic Dependence of Quadratic polynomials over \mathbb{F}_2

References

Noga Alon and Michael Capalbo. Explicit unique-neighbor expanders.

In *The 43rd Annual IEEE Symposium on Foundations of Computer Science, (FOCS 2002). Proceedings*, pages 73–79. IEEE, 2002.

- Zeyu Guo, Nitin Saxena, and Amit Sinhababu. Algebraic dependencies and pspace algorithms in approximative complexity over any field. *Theory of Computing*, 15(16):1–30, 2019.
- Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.
- Moshe Morgenstern.

Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q.