On Blackbox Polynomial Identity Testing of sparse polynomials

Devansh Shringi

Advisor: Prof. Markus Bläser

June 28, 2022

1 New Hitting Set for Sparse Polynomials

We have as input $f \in \mathbb{F}_m[x_1, \ldots, x_n]$ such that f has m monomials and \mathbb{F} is field like \mathbb{R} or \mathbb{Q} where Descartes' rule of signs follow.

Define the set

$$\mathcal{S}(n,m) := \{ (c_1, \dots, c_n) | c_i \in [m] \text{ and } \prod_{i=1}^n c_i \le m \}$$

Lemma 1.1. S(n,m) is a hitting set for $\mathbb{F}_m[x_1,\ldots,x_n]$.

Proof. We will prove this by induction over n. For n = 1 and any $m \ge 1$, we have by Descartes' rule of signs that number of positive roots \le number of sign changes, which is <m. So in the set $\{1, \ldots, m\}$, there must be a value for which the univariate is non-zero.

Now in the induction hypothesis we assume, for all m, S(n-1,m) is a hitting set for $\mathbb{F}_m[x_1,\ldots,x_{n-1}]$. Now consider for any $m, f \in \mathbb{F}_m[x_1,\ldots,x_n]$ as input. We consider it as a univariate in x_n as $f = \sum_{i=1}^{s_n} P_i(x_1,\ldots,x_{n-1})x_n^{d_i}$ where s_n is the number of distinct degrees of x_n in f. There must exist an i such that the number of monomials in P_i is $\leq \lfloor \frac{m}{s_n} \rfloor$, as if all were larger, then the total number of monomials will be > m. If $f \neq 0$, then $P_i \neq 0$. Using induction hypothesis, we get that $S\left(n-1, \leq \lfloor \frac{m}{s_n} \rfloor\right)$ is a hitting set for P_i , i.e.

Using induction hypothesis, we get that $\mathcal{S}\left(n-1, \leq \lfloor \frac{m}{s_n} \rfloor\right)$ is a hitting set for P_i , i.e. $\exists (c_1, \ldots, c_{n-1}) \in \mathcal{S}(n, m)$ such that $P_i \neq 0$ and $\prod_{i=1}^{n-1} c_i \leq \lfloor \frac{m}{s_n} \rfloor$. Thus, fixing $x_i = c_i, \forall n \in [n-1]$, we have f as a univariate in x_n with s_n monomials. By Descartes' rule of signs, we have for some $c_n \in \{1, \ldots, s_n\}$ where $f(c_1, \ldots, c_n) \neq 0$. Also,

$$\prod_{i=1}^{n} = c_n \cdot \prod_{i=1}^{n-1} c_i \le c_n \cdot \left\lfloor \frac{m}{s_n} \right\rfloor \le s_n \cdot \left\lfloor \frac{m}{s_n} \right\rfloor \le m$$

Thus, $\mathcal{S}(n,m)$ is a hitting set for $\mathbb{F}_m[x_1,\ldots,x_n]$.

To estimate the size of the hitting set, we will need the following lemma by Kalmar

Lemma 1.2. [Kal30] g(n) is defined as the number of ordered factorizations of n into parts greater than 1. Then for ζ refers to the Riemann zeta function and $\rho \approx 1.73$ is the unique solution of $\zeta(\rho) = 2$ in $(1, \infty)$, we have

$$\sum_{n \le x} g(n) = -\frac{1}{\rho \zeta'(\rho)} x^{\rho} + o(x^{\rho})$$

Now we estimate its size.

Lemma 1.3. $|\mathcal{S}(n,m)|$ is $\mathcal{O}(2^n \cdot m^{\rho})$, where $\rho \approx 1.73$.

Proof. Let A(x,t) be the number of ordered factorizations of x with t partitions. We can map these t values to $t c_i$'s in $\binom{n}{t}$ ways, and since it's ordered factorizations we don't need to worry about permutations. Therefore, we have

$$\begin{aligned} |\mathcal{S}(n,m)| &= \sum_{x=1}^{m} \sum_{t=1}^{n} \binom{n}{t} A(x,t) \\ &= \sum_{t=1}^{n} \sum_{x=1}^{m} \binom{n}{t} A(x,t) \\ &= \sum_{t=1}^{n} \binom{n}{t} \sum_{x=1}^{m} A(x,t) \end{aligned}$$

By Theorem 1.2, we know that the number of ordered factorizations such that product is $\leq m$ is $\mathcal{O}(m^{\rho})$. Therefore, $\sum_{x=1}^{m} A(x,t) < \mathcal{O}(m^{\rho})$.

$$|\mathcal{S}(n,m)| \le \sum_{t=1}^{n} {n \choose t} \mathcal{O}(m^{\rho}) = \mathcal{O}(2^{n} \cdot m^{\rho})$$

We can use the reduction from [BE11] to get the number of variables to log(mn) to get poly(m, n) bound on the size of hitting set.

References

- [BE11] Markus Bläser and Christian Engels. Randomness efficient testing of sparse black box identities of unbounded degree over the reals. In *Symposium on Theoretical Aspects of Computer Science (STACS2011)*, volume 9, pages 555–566, 2011.
- [Kal30] Laszlo Kalmár. Uber die mittlere anzahl der produktdarstellungen der zahlen, erste mitteilung. Acta Litterarum ac Scientiarum, Szeged, 5(95):107, 1930.