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1 New Hitting Set for Sparse Polynomials
We have as input f ∈ Fm[x1, . . . , xn] such that f has m monomials and F is field like R or
Q where Descartes’ rule of signs follow.

Define the set

S(n, m) := {(c1, . . . , cn)|ci ∈ [m] and
n∏

i=1
ci ≤ m}

Lemma 1.1. S(n, m) is a hitting set for Fm[x1, . . . , xn].

Proof. We will prove this by induction over n. For n = 1 and any m ≥ 1, we have by
Descartes’ rule of signs that number of positive roots ≤number of sign changes, which is
<m. So in the set {1, . . . , m}, there must be a value for which the univariate is non-zero.

Now in the induction hypothesis we assume, for all m, S(n − 1, m) is a hitting set for
Fm[x1, . . . , xn−1]. Now consider for any m, f ∈ Fm[x1, . . . , xn] as input. We consider it as a
univariate in xn as f = ∑sn

i=1 Pi(x1, . . . , xn−1)xdi
n where sn is the number of distinct degrees

of xn in f . There must exist an i such that the number of monomials in Pi is ≤
⌊

m
sn

⌋
, as if

all were larger, then the total number of monomials will be > m. If f ̸= 0, then Pi ̸= 0.
Using induction hypothesis, we get that S

(
n − 1, ≤

⌊
m
sn

⌋)
is a hitting set for Pi, i.e.

∃(c1, . . . , cn−1) ∈ S(n, m) such that Pi ̸= 0 and ∏n−1
i=1 ci ≤

⌊
m
sn

⌋
. Thus, fixing xi = ci, ∀n ∈

[n − 1], we have f as a univariate in xn with sn monomials. By Descartes’ rule of signs, we
have for some cn ∈ {1, . . . , sn} where f(c1, . . . , cn) ̸= 0. Also,

n∏
i=1

= cn ·
n−1∏
i=1

ci ≤ cn ·
⌊

m

sn

⌋
≤ sn ·

⌊
m

sn

⌋
≤ m

Thus, S(n, m) is a hitting set for Fm[x1, . . . , xn].

To estimate the size of the hitting set, we will need the following lemma by Kalmar
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Lemma 1.2. [Kal30] g(n) is defined as the number of ordered factorizations of n into parts
greater than 1. Then for ζ refers to the Riemann zeta function and ρ ≈ 1.73 is the unique
solution of ζ(ρ) = 2 in (1, ∞), we have

∑
n≤x

g(n) = − 1
ρζ ′(ρ)xρ + o(xρ)

Now we estimate its size.

Lemma 1.3. |S(n, m)| is O(2n · mρ), where ρ ≈ 1.73.

Proof. Let A(x, t) be the number of ordered factorizations of x with t partitions. We can
map these t values to t ci’s in

(
n
t

)
ways, and since it’s ordered factorizations we don’t need

to worry about permutations. Therefore, we have

|S(n, m)| =
m∑

x=1

n∑
t=1

(
n

t

)
A(x, t)

=
n∑

t=1

m∑
x=1

(
n

t

)
A(x, t)

=
n∑

t=1

(
n

t

)
m∑

x=1
A(x, t)

By Theorem 1.2, we know that the number of ordered factorizations such that product
is ≤ m is O(mρ). Therefore, ∑m

x=1 A(x, t) < O(mρ).

|S(n, m)| ≤
n∑

t=1

(
n

t

)
O(mρ) = O(2n · mρ)

We can use the reduction from [BE11] to get the number of variables to log(mn) to get
poly(m, n) bound on the size of hitting set.
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