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Tensors

@ Tensor: Higher Dimension versions of Matrices
T = (ajl,j27~-~7jd) € rmxxnd
T is a d-dimensional tensor with shape [n1] X ... x [ng]. F=R or C
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@ Rank of a Tensor (CP rank)

Minimum k s.t. 7 can be written as sum of k rank-1 tensors

@ Tensor Decomposition: Computing the k rank-1 tensors

k
T=> vai® - ®vd
i=1
where vj; € F, ® is the Kronecker/Outer Product
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Tensor Decomposition: Applications

An algorithmic primitive with many applications

e Complexity (Matrix Multiplication) and Combinatorics (Capset,
Sunflower)

@ Machine Learning (Learning Mixture of Gaussians, Dictionary
Learning, Topic Modeling, etc.)

e Statistics (Cumulants, Blind source separation, etc.)

e Signal processing (Independent component analysis, Community
detection, Multi-reference alignment, etc.)

@ Phylogenetic reconstruction, Quantum Information Theory,
Fluorescence spectroscopy.

(see [Lan12])
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Tensor Decomposition: Complexity

@ [Has90] showed finding Tensor rank is NP-hard for d > 3.

@ [SS16] hardness related to solving a system of polynomial equations.
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Tensor Decomposition: Complexity

[H3s90] showed finding Tensor rank is NP-hard for d > 3.

[SS16] hardness related to solving a system of polynomial equations.

Studied in various settings such as finding decomposition for Random
Tensors, Generic tensors, and Worst-case analysis.

@ We are interested in the setting of worst-case tensor decomposition
where d =~ poly(n), k =~ log!/ n for some constant c.

Our Goal is to come up with Deterministic Tensor decomposition
algorithms that run in time 2P°Y(¥) . poly(n, d).
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Reconstruction of Arithmetic Circuits
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Arithmetic Circuits

e Circuit computing a polynomial f € F[xy, ..., xa].
o Gates are +, x. Leaves have {x1,...,x,F}.
o Edges with labels from F (1 by default).

Figure: Circuit computing xy + 2y? é usveRstTY oF
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Reconstruction of Arithmetic Circuits

Reconstruction

Let f be a polynomial computed by a circuit C from class C. Given
Black-box access to evaluations of a f, efficiently output a circuit
computing f.

@ Proper learning: The output circuit should also be from the class C.
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Reconstruction of Arithmetic Circuits

Reconstruction

Let f be a polynomial computed by a circuit C from class C. Given
Black-box access to evaluations of a f, efficiently output a circuit
computing f.

@ Proper learning: The output circuit should also be from the class C.
o Depth-2: X1 Interoplation [BOT88, KSO01], MX Factoring [Kal87]

@ Polytime reconstruction for Depth-3 Arithmetic circuits XX give
subexponential time reconstruction for general circuits [GKKS13].

@ Polytime PAC-Learning for depth-3 circuits give quantum polytime
SVP algorithms [KS09b].
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Set-Multilinear Polynomials

@ Multilinear: In each monomial, the degree of each variable is 1

o Set-Multilinear: Variables partitioned into X = L;c(q) X, each
monomial is of the form x; xj, ... xj, where xi; € Xj.
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Set-Multilinear Polynomials

@ Multilinear: In each monomial, the degree of each variable is 1
o Set-Multilinear: Variables partitioned into X = L;c(q) X, each
monomial is of the form x; x;, . .. x;, where x; € X;.

@ A circuit is multilinear/set-multilinear if the polynomial computed at
every gate is multilinear/set-multilinear.

Depth-3 Set-Multilinear circuits XMy, x 3 (k)

k d
c(X)=>_TI¢(x)

i=1j=1
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Equivalence of the Two problems

@ Tensor 7 d-dimensional
with shape
[n1] X ... X [nd]

@ Set-Multilinear Polynomial f over
variables X = L; X;,
Xi=A{xi1,...,Xin}

— .. . nyX---Xng
T - (aJ1J27---7Jd) €F £ o . _ .
T = Z Q1 fayeeeja X1, j1 X2,j3 -+ - Xd,jg

@ 7 has decomposition jeT
o C(X)isa ZNxy,xy(k) circuit

k computing fr
T=> v(li1)® --®v(lq)

i=1 k d

| fr = C(X) = >_114s(X%)

where v(¢; ;) is ¢; j as =1 j=1
vector in Fi. L onvessiry o
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Past Work
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Results

Algorithm Type

Running Time

Works for

[ShpO7]

Randomized

poly(n, d, |F])

Multilinear XX (2)

[KS09a]

Deterministic

poly(n, d<°, |F))

Multilinear XL (k)

[BSV21]

Deterministic

10
poly(d*’, kK", n)

Both (Multi./SM)

[PSV24]

Randomized

O(k)
K poly(n, d)

Both (Multi./SM)

[BS25]

Deterministic

2p01}’(k) . poly(n7 d)

Set-Multilinear only

Table: Comparison of our results to previous works.
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Results | Algorithm Type Running Time Works for
[Shp07] Randomized poly(n, d, |F|) Multilinear XX (2)
[KS09a] Deterministic poly(n,d<, [F|) | Multilinear £N% (k)
10
[BSV21] Deterministic poly(d¥’, k*"" n) | Both (Multi./SM)
oK)
[PSV24] Randomized KK . poly(n,d) | Both (Multi./SM)
[BS25] Deterministic | 2P°Y(K) . poly(n, d) | Set-Multilinear only

Table: Comparison of our results to previous works.

NP-hardness and Exponential time Hypothesis = 22(¥) . poly(n, d)
running time for tensor decomposition.
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Our Results
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Our Results

Theorem (Learning XMX x1(k) circuits)

Given blackbox access to degree d, n variate polynomial f computable by
a set-multilinear XM ¢, x.y (k) circuit C with top fan-in k over F =R or
C, then there exists a deterministic algorithm that outputs a
set-multilinear XM, Xj}(k) circuit over F with top fan-in k computing f
in time F(k, n,d) = 2P°¥(K) . poly(n, d).

Difficult to improve over 2P°W(K) ysing approaches that use solving system
of polynomial equations.
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Our Results

Corollary (Decomposing rank-k tensors)

Let T € FmxXNd pe a d-dimensional tensor of rank at most k with
F=R orC. Let n=Y%, n;. Given black-box access to measurements of
T (equivalently to evaluations of fr ), there exists a deterministic
poly(2P°Y(K) d . n) time algorithm for computing a decomposition of T as
a sum of at most k rank 1 tensors.
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Our Results: Finite Fields

Theorem (Learning XX, x1(k) circuits over )

Given blackbox access to degree d, n variate polynomial f computable by
a set-multilinear XNX(, x.1(k) circuit C with top fan-in k over F = Fg,
then there exists a randomized algorithm that outputs a set-multilinear
XMX,xy (k) circuit over F with top fan-in k computing f in time

F(k,n,d) = 22" poly(n, d).

Time Blow-up and Randomization are both from procedures for solving
systems of polynomial equations.
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Proof Idea: Required Tools
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Polynomial Identity Testing

e For IMY circuit C=Y%, T;
A(Tl, T2) = rank(sim(Tl + Tz)) = dim({E/J . E,'J € ng( Tl, T2)})
o Let C =35, T; be ZM¥, x1(k) computing 0.

Vi#£jelk], A(Ti, Tj)) < k-2
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Polynomial Identity Testing

e For IMY circuit C=Y%, T;
A(Tl, T2) = rank(sim(Tl + Tz)) = dim({E/J . E,'J € ng( Tl, T2)})
o Let C =35, T; be ZM¥, x1(k) computing 0.

Vi#£jelk], A(Ti, Tj)) < k-2

o [GG20] Deterministic PIT for XM, x;)(k) in time 20(log? k) -poly(n)
e [SV10] Assume ged(Tq,..., Tx) = 1.
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Solving System of Polynomial

Let fi,fp, ... fm € Flxq, ..., xn| be n-variate polynomials of degree at most
d. Then, the complexity of finding a single solution to the system
fi(x) =0,...,fm(x) =0 (if one exists) over various fields is as follows:

O [GV88] For F = R, deterministic Sysg(n, m, d) = poly((md)™) time.

@ [ler89] For F = C (or any algebraically closed field) deterministic
Sysg(n, m, d) = (mn)°( . dO(™) time.
© For all fields ¥, the Sysg(n, m, d) = poly((nmd)3").
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Proof Idea: Techniques from BSV21
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Low-Degree Reconstruction

Lemma ([BSV21])

Given black-box access to a degree d polynomial f € F[X] such that f is
computable by a XX, x(k) circuit Cr over the field F =R or C, there
is a deterministic 2P°(k.d) . poly(n, d) time algorithm that outputs a
YN x) (k) circuit computing f.

&
& UNIVERSITY OF

& TORONTO

Devansh Shringi (UofT) FPT Tensor Decomposition ICALP 2025 21/31



Learning Almost Circuit

Lemma (Observed from [BSV21])

Given black-box access to an ZI'IZ{uJ.Xj}(k) circut C=T1+To+...+ T
computing f, there exists an algorithm that runs in time

2r0ly(K) . poly(n, d) and outputs a YMEyx3 (k) circuit C' such that
C'=T{+ Ti+ ...+ T| has the property that ¥V i € [k] A(T;, T!) < 2k.

Bottleneck: Brute-force over (;’3) choices of variable parts in [BSV21] to
go from C’ to C.

&

& TORONTO

Devansh Shringi (UofT) FPT Tensor Decomposition ICALP 2025 22/31



Proof Idea: New ldeas
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Learning with Assumption

e Consistent — VarPart(C, C') := {j € [d]|Vi € [k]¢;j € TiN T/}
e |Consistent — VarPart(C, C')| > d — k.
e Assumption: 3j € Consistent — VarPart(C, C’) such that

1j & span(la, ... li)
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Learning with Assumption

Consistent — VarPart(C, C') := {j € [d]|Vi € [k]¢;j € TiN T/}
|Consistent — VarPart(C, C')| > d — k.
Assumption: 3j € Consistent — VarPart(C, C’) such that

1j & span(la, ... li)

@ Set Xj = @ such that Tp,..., Ty vanish, but T; doesn't. Learn
(X = @).

@ Recover Ty := T1(X; = &) - %.

o Reconstruct ZMXy x(k — 1) circuit C — Ty.
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Assumption is not True

o lterate over variable parts in Consistent — VarPart(C, C’) and
Decrease fan-in by 1.

@ Go until only T7 is alive.
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Assumption is not True

o lterate over variable parts in Consistent — VarPart(C, C’) and
Decrease fan-in by 1.

@ Go until only T7 is alive.

@ What if Ty, T; are same on all variable parts in
Consistent — VarPart(C, C')? i.e. C’ cannot help us differentiate
between T7, T;.
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Clustering

o Cluster gates close to T; together in set A C [k].

o New Goal, learn Cj.

3 clustering A C [k] s.t.

Vig A, Aa(Ca, Ti) > k2 + k

and
A(Cp) = rank(sim(z T)) < k* 4+ k3
i€cA
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Isolating Cluster

e Good — Proj = Consistent — VarPart(C, C') N Supp(Lin(Ca)).

o |Good — Proj| > d — 2k* — k3. Use Good — Proj instead of
Counsistent — VarPart(C, C').
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Isolating Cluster

Good — Proj = Consistent — VarPart(C, C") N Supp(Lin(Ca)).

|Good — Proj| > d — 2k* — k3. Use Good — Proj instead of
Counsistent — VarPart(C, C').

Pick k® + 1 var. parts in [d], at least 1 in Good — Proj
Set Xj = aj s.t. Ca survives, some T; ¢ Ais set to 0.
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Isolating Cluster
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Learning Cluster

o Cluster is isolated after at most k settings (0 := (Xj, = &j,),...)

e Factor and Reconstruct sim(Ca) using low-degree reconstruction.
Recall d < A(Ca) < k* + k3. Learn Cal,.
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Learning Cluster

o Cluster is isolated after at most k settings (0 := (Xj, = &j,),...)

e Factor and Reconstruct sim(Ca) using low-degree reconstruction.
Recall d < A(Ca) < k* + k3. Learn Cal,.

@ Learn

 xes 414(X)

Cp==—"1———
[x.eo (1())

'CA‘O'
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Learning Full Circuit

@ Learn C' = C — C,4.

@ Check with PIT if the output circuit computes the same polynomial
as C.
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Questions?

Thank You.
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