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Tensors

Tensor: Higher Dimension versions of Matrices

T = (αj1,j2,...,jd ) ∈ Fn1×···×nd

T is a d-dimensional tensor with shape [n1] × . . . × [nd ]. F = R or C

Figure: A 3-dimensional [3] × [5] × [2] shaped Tensor
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Tensor Rank

Rank of a Tensor (CP rank)

Tensor rank
Minimum k s.t. T can be written as sum of k rank-1 tensors

Tensor Decomposition: Computing the k rank-1 tensors

T =
k∑

i=1
vi1 ⊗ · · · ⊗ vid

where vij ∈ Fnj , ⊗ is the Kronecker/Outer Product
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Tensor Decomposition: Applications

An algorithmic primitive with many applications
Complexity (Matrix Multiplication) and Combinatorics (Capset,
Sunflower)
Machine Learning (Learning Mixture of Gaussians, Dictionary
Learning, Topic Modeling, etc.)
Statistics (Cumulants, Blind source separation, etc.)
Signal processing (Independent component analysis, Community
detection, Multi-reference alignment, etc.)
Phylogenetic reconstruction, Quantum Information Theory,
Fluorescence spectroscopy.

(see [Lan12])
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Tensor Decomposition: Complexity

[Hås90] showed finding Tensor rank is NP-hard for d ≥ 3.
[SS16] hardness related to solving a system of polynomial equations.

Studied in various settings such as finding decomposition for Random
Tensors, Generic tensors, and Worst-case analysis.
We are interested in the setting of worst-case tensor decomposition
where d ≈ poly(n), k ≈ log1/c n for some constant c.
Our Goal is to come up with Deterministic Tensor decomposition
algorithms that run in time 2poly(k) · poly(n, d).
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Reconstruction of Arithmetic Circuits
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Arithmetic Circuits

Circuit computing a polynomial f ∈ F[x1, . . . , xn].
Gates are +, ×. Leaves have {x1, . . . , xn,F}.
Edges with labels from F (1 by default).

×

+ y

x y

2

Figure: Circuit computing xy + 2y2
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Reconstruction of Arithmetic Circuits

Reconstruction
Let f be a polynomial computed by a circuit C from class C. Given
Black-box access to evaluations of a f , efficiently output a circuit
computing f .

Proper learning: The output circuit should also be from the class C.

Depth-2: ΣΠ Interoplation [BOT88, KS01], ΠΣ Factoring [Kal87]
Polytime reconstruction for Depth-3 Arithmetic circuits ΣΠΣ give
subexponential time reconstruction for general circuits [GKKS13].
Polytime PAC-Learning for depth-3 circuits give quantum polytime
SVP algorithms [KS09b].
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Set-Multilinear Polynomials

Multilinear: In each monomial, the degree of each variable is 1
Set-Multilinear: Variables partitioned into X = ⊔j∈[d]Xj , each
monomial is of the form xi1xi2 . . . xid where xij ∈ Xj .

A circuit is multilinear/set-multilinear if the polynomial computed at
every gate is multilinear/set-multilinear.

Depth-3 Set-Multilinear circuits ΣΠΣ{⊔j Xj }(k)

C(X ) =
k∑

i=1

d∏
j=1

ℓi ,j(Xj)
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Equivalence of the Two problems

Tensor T d-dimensional
with shape
[n1] × . . . × [nd ]

T = (αj1,j2,...,jd ) ∈ Fn1×···×nd

T has decomposition

T =
k∑

i=1
v(ℓi ,1)⊗· · ·⊗v(ℓi ,d)

where v(ℓi ,j) is ℓi ,j as
vector in Fnj .

Set-Multilinear Polynomial fT over
variables X = ⊔iXi ,
Xi = {xi ,1, . . . , xi ,ni }

fT :=
∑
j̄∈T

αj1,j2,...,jd x1,j1x2,j2 . . . xd ,jd

C(X ) is a ΣΠΣ{⊔j Xj }(k) circuit
computing fT

fT = C(X ) :=
k∑

i=1

d∏
j=1

ℓi ,j(Xj)
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Past Work
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Past Work

Results Algorithm Type Running Time Works for
[Shp07] Randomized poly(n, d , |F|) Multilinear ΣΠΣ(2)
[KS09a] Deterministic poly(n, dk2

, |F|) Multilinear ΣΠΣ(k)
[BSV21] Deterministic poly(dk3

, kkk10
, n) Both (Multi./SM)

[PSV24] Randomized kkkO(k)
· poly(n, d) Both (Multi./SM)

[BS25] Deterministic 2poly(k) · poly(n, d) Set-Multilinear only

Table: Comparison of our results to previous works.

NP-hardness and Exponential time Hypothesis =⇒ 2Ω(k) · poly(n, d)
running time for tensor decomposition.
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Our Results
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Our Results

Theorem (Learning ΣΠΣ{⊔j Xj }(k) circuits)

Given blackbox access to degree d, n variate polynomial f computable by
a set-multilinear ΣΠΣ{⊔j Xj }(k) circuit C with top fan-in k over F = R or
C, then there exists a deterministic algorithm that outputs a
set-multilinear ΣΠΣ{⊔j Xj }(k) circuit over F with top fan-in k computing f
in time F (k, n, d) = 2poly(k) · poly(n, d).

Difficult to improve over 2poly(k) using approaches that use solving system
of polynomial equations.
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Our Results

Corollary (Decomposing rank-k tensors)
Let T ∈ Fn1×···×nd be a d-dimensional tensor of rank at most k with
F = R or C. Let n =

∑d
i=1 ni . Given black-box access to measurements of

T (equivalently to evaluations of fT ), there exists a deterministic
poly(2poly(k), d , n) time algorithm for computing a decomposition of T as
a sum of at most k rank 1 tensors.
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Our Results: Finite Fields

Theorem (Learning ΣΠΣ{⊔j Xj }(k) circuits over Fq)

Given blackbox access to degree d, n variate polynomial f computable by
a set-multilinear ΣΠΣ{⊔j Xj }(k) circuit C with top fan-in k over F = Fq,
then there exists a randomized algorithm that outputs a set-multilinear
ΣΠΣ{⊔j Xj }(k) circuit over F with top fan-in k computing f in time
F (k, n, d) = 22poly(k) · poly(n, d).

Time Blow-up and Randomization are both from procedures for solving
systems of polynomial equations.
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Proof Idea: Required Tools
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Polynomial Identity Testing

For ΣΠΣ circuit C =
∑k

i=1 Ti

∆(T1, T2) = rank(sim(T1 + T2)) = dim({ℓi ,j : ℓi ,j ̸∈ gcd(T1, T2)})

Let C =
∑k

i=1 Ti be ΣΠΣ{⊔j Xj }(k) computing 0.

∀i ̸= j ∈ [k], ∆(Ti , Tj) ≤ k − 2

[GG20] Deterministic PIT for ΣΠΣ{⊔j Xj }(k) in time 2O(log2 k) · poly(n)
[SV10] Assume gcd(T1, . . . , Tk) = 1.
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Solving System of Polynomial

Theorem

Let f1, f2, . . . fm ∈ F[x1, . . . , xn] be n-variate polynomials of degree at most
d. Then, the complexity of finding a single solution to the system
f1(x) = 0, . . . , fm(x) = 0 (if one exists) over various fields is as follows:

1 [GV88] For F = R, deterministic SysF(n, m, d) = poly((md)n2) time.
2 [Ier89] For F = C (or any algebraically closed field) deterministic

SysF(n, m, d) = (mn)O(n) · dO(n2) time.
3 For all fields F, the SysF(n, m, d) = poly((nmd)3n).
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Proof Idea: Techniques from BSV21
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Low-Degree Reconstruction

Lemma ([BSV21])

Given black-box access to a degree d polynomial f ∈ F[X ] such that f is
computable by a ΣΠΣ{⊔j Xj }(k) circuit Cf over the field F = R or C, there
is a deterministic 2poly(k,d) · poly(n, d) time algorithm that outputs a
ΣΠΣ{⊔j Xj }(k) circuit computing f .
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Learning Almost Circuit

Lemma (Observed from [BSV21])

Given black-box access to an ΣΠΣ{⊔j Xj }(k) circuit C = T1 + T2 + . . . + Tk
computing f , there exists an algorithm that runs in time
2poly(k) · poly(n, d) and outputs a ΣΠΣ{⊔j Xj }(k) circuit C ′ such that
C ′ = T ′

1 + T ′
2 + . . . + T ′

k has the property that ∀ i ∈ [k] ∆(Ti , T ′
i ) < 2k.

Bottleneck: Brute-force over
( d

k3
)

choices of variable parts in [BSV21] to
go from C ′ to C .
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Proof Idea: New Ideas
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Learning with Assumption

Consistent − VarPart(C , C ′) := {j ∈ [d ]|∀i ∈ [k]ℓi ,j ∈ Ti ∩ T ′
i }

|Consistent − VarPart(C , C ′)| ≥ d − k2.
Assumption: ∃j ∈ Consistent − VarPart(C , C ′) such that

ℓ1,j ̸∈ span(ℓ2,j , . . . , ℓk,j)

Set Xj = ᾱj such that T2, . . . , Tk vanish, but T1 doesn’t. Learn
T1(Xj = ᾱj).
Recover T1 := T1(Xj = ᾱj) · ℓ1,j

ℓ1,j (ᾱj ) .
Reconstruct ΣΠΣ{⊔j Xj }(k − 1) circuit C − T1.
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Assumption is not True

Iterate over variable parts in Consistent − VarPart(C , C ′) and
Decrease fan-in by 1.
Go until only T1 is alive.

What if T1, Ti are same on all variable parts in
Consistent − VarPart(C , C ′)? i.e. C ′ cannot help us differentiate
between T1, Ti .
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Clustering

Cluster gates close to T1 together in set A ⊆ [k].
New Goal, learn CA.

Lemma
∃ clustering A ⊆ [k] s.t.

∀i ̸∈ A, ∆A(CA, Ti) ≥ k2 + k

and
∆(CA) = rank(sim(

∑
i∈A

Ti)) ≤ k4 + k3
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Isolating Cluster

Good − Proj = Consistent − VarPart(C , C ′) ∩ Supp(Lin(CA)).
|Good − Proj| ≥ d − 2k4 − k3. Use Good − Proj instead of
Consistent − VarPart(C , C ′).

Pick k5 + 1 var. parts in [d ], at least 1 in Good − Proj
Set Xj = ᾱj s.t. CA survives, some Ti ̸∈ A is set to 0.
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Set Xj = ᾱj s.t. CA survives, some Ti ̸∈ A is set to 0.

Devansh Shringi (UofT) FPT Tensor Decomposition ICALP 2025 27 / 31



Isolating Cluster

G = [k]

j1. . .1 . . . k5

. . .2 k5 + 1 . . . 1 . . . j2 . . . k5 + 1 . . . 1 . . . k5 + 1

j3. . .1 . . . k5 + 2

G = AGood T1-Isolating projection
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Learning Cluster

Cluster is isolated after at most k settings (σ := (Xj1 = ᾱj1), . . .)
Factor and Reconstruct sim(CA) using low-degree reconstruction.
Recall d ≤ ∆(CA) ≤ k4 + k3. Learn CA|σ.

Learn
CA =

∏
Xj ∈σ ℓ1,j(Xj)∏
Xj ∈σ ℓ1,j(ᾱj)

· CA|σ
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Learning Full Circuit

Learn C ′ = C − CA.
Check with PIT if the output circuit computes the same polynomial
as C .
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Questions?

Thank You.
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Full version at https://eccc.weizmann.ac.il/report/2010/036.
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